Abstract:
One or more efficacious electrode combinations for delivering electrical stimulation therapy to a patient may be selected based on the delivery of electrical stimulation to the patient via a predefined set of test electrode combinations in a predetermined order. In some examples, the electrode combinations of the set are arranged in the predetermined order such that adjacent electrode combinations in the order include at least one shared anode electrode or cathode electrode. In addition, the electrode combinations in the predetermined order may define a predetermined sequence of electrode patterns, each electrode pattern defining a relative arrangement between one or more anodes and one or more cathodes of the respective electrode pattern. In some examples, the transition between electrode combinations in the predefined set is achieved by incrementally adjusting at least one of anodic amplitudes assigned to active anode electrodes or cathodic amplitudes assigned to active cathode electrodes.
Abstract:
Medical device recharging systems include a controller and a separate recharge device that communicate wirelessly together to provide recharging to an implantable medical device. Either the controller or the recharge device may also communicate wirelessly with the implantable medical device to obtain recharge status and other information. There may be multiple recharge devices present within communication range of the controller, and the controller may determine which recharge device to activate depending upon proximity of each recharge device to the implantable medical device. The controller may allow the recharge device that is active at any given time to change so that the patient having the implantable medical device can move about in the area where the recharge devices are located while recharging continues.
Abstract:
In some examples, a method may include delivering an electrical stimulation therapy to a patient, the electrical stimulation therapy comprising a first electrical stimulation pulse delivered to the patient via a first electrode and a second electrical stimulation pulse delivered to the patient via a second electrode, wherein the first electrical stimulation pulse and second electrical stimulation pulse are delivered as paired pulses with respect to each other and a combination of the first electrical stimulation pulse and the second electrical stimulation pulse evoke a compound action potential within the patient; sensing the compound action potential evoked by the combination of the first electrical stimulation pulse and the second electrical stimulation pulse; and adjusting one or more parameters of the electrical stimulation therapy based on the sensed compound action potential
Abstract:
Techniques are described for generating electrical stimulation current pulses for delivery of electrical stimulation therapy via a current-controlled system that emulates voltage pulses generated via a voltage-controlled system. In one example, a method includes receiving user input specifying a voltage level of electrical stimulation to be delivered by one or more of a plurality of electrodes implanted within the patient, selectively coupling the one or more electrodes to respective regulated current paths to deliver the electrical stimulation to the patient, selectively coupling at least another of the plurality of electrodes implanted within the patient to an unregulated current path to deliver the electrical stimulation to the patient, determining a regulated current for each respective regulated current path in order to produce the specified voltage level at the one or more electrodes selectively coupled to the respective regulated current paths, and delivering the determined regulated currents via the respective regulated current paths.
Abstract:
Method of recharging a power source such as a rechargeable lithium ion battery for an implantable medical device. Energy is received within the implantable medical device from an external energy source which energy is used to recharge the power source. At least one recharge parameter associated with recharging of the power source is monitored. Recharging is regulated by increasing a charging rate of the power source in response, at least in part, on the recharge parameter being monitored.
Abstract:
One or more efficacious electrode combinations for delivering electrical stimulation therapy to a patient may be selected based on the delivery of electrical stimulation to the patient via a predefined set of test electrode combinations in a predetermined order. In some examples, the electrode combinations of the set are arranged in the predetermined order such that adjacent electrode combinations in the order include at least one shared anode electrode or cathode electrode. In addition, the electrode combinations in the predetermined order may define a predetermined sequence of electrode patterns, each electrode pattern defining a relative arrangement between one or more anodes and one or more cathodes of the respective electrode pattern. In some examples, the transition between electrode combinations in the predefined set is achieved by incrementally adjusting at least one of anodic amplitudes assigned to active anode electrodes or cathodic amplitudes assigned to active cathode electrodes.
Abstract:
A medical system implements a seizure detection algorithm to detect a seizure based on a first patient parameter. The medical system monitors a second patient parameter to adjust the seizure detection algorithm. In some examples, the medical system determines whether a seizure for which therapy delivery is desirable occurred based on a second patient parameter. If a target seizure occurred, and the seizure detection algorithm did not detect the target seizure, the medical system adjusts the seizure detection algorithm to detect the target seizure. For example, the medical system may determine a first patient parameter characteristic indicative of the target seizure detected based on the second patient parameter and store the first patient parameter characteristic as part of the seizure detection algorithm. In some examples, the first patient parameter is an electrical brain signal and the second patient parameter is patient activity (e.g., patient motion or posture).
Abstract:
An external device transfers a key to an implantable medical device over a proximity communication and then establishes a first far field communication session with the implantable medical device where the key is used for the first communication session. This first communication session may occur before implantation while the implantable medical device is positioned outside of the sterile field so that using a proximity communication is easily achieved. Once the implantable medical device is passed into the sterile field for implantation, the external device may then establish a second far field communication session with the implantable medical device where the last key that was used for the first communication session is again used for the second communication session which avoids the need for another proximity communication to occur within the sterile field.
Abstract:
A medical device includes wake circuitry and telemetry circuitry. The wake circuitry is configured to receive a first set of data from a device associated with the medical device, where the first set of data is received at a frequency band. The wake circuitry is configured to output a set of pulses based on the first set of data. The wake circuitry is configured to detect a data pattern using the set of pulses. The wake circuitry is configured to output an activation signal in response to a determination that the data pattern satisfies a data pattern requirement. The telemetry circuitry is configured to output a second set of data in response to receiving the activation signal. The second set of data is transmitted at the frequency band. The telemetry circuitry is configured to establish a communication session with the device using the second set of data.
Abstract:
An external device transfers a key to an implantable medical device over a proximity communication and then establishes a first far field communication session with the implantable medical device where the key is used for the first communication session. This first communication session may occur before implantation while the implantable medical device is positioned outside of the sterile field so that using a proximity communication is easily achieved. Once the implantable medical device is passed into the sterile field for implantation, the external device may then establish a second far field communication session with the implantable medical device where the last key that was used for the first communication session is again used for the second communication session which avoids the need for another proximity communication to occur within the sterile field.