摘要:
The present invention relates to a tire puncture sealant and a pneumatic tire containing such puncture sealant as a built-in puncture sealant. The sealant composition contains silica reinforcement and butyl rubber depolymerized in the presence of a balanced and cooperative combination of organoperoxides comprised of a minor amount of 4,4-di(tertiary butylperoxy) valerate depolymerization initiator and a major amount of dicumyl peroxide depolymerization propagator, the combination of which has been observed to have a synergistic effect.
摘要:
A composite material comprises a plurality of springs forming a structure embedded within a polymer. Each spring is interwoven with at least one other spring thereby forming an entirely polymer-coated structure.
摘要:
A tire mold 2 for curing new or retreaded tires 20 has an upper platen 4, a lower platen 6, and a central rim 30 with a frangible member 50 designed to open when a predetermined pressure P1 in excess of the normal curing pressure Pc is observed. The frangible member 50 preferably includes a rupture disk 60 that breaks upon exposure to the pressure P1.
摘要:
A composite material comprises a plurality of springs forming a structure embedded within a polymer. Each spring is interwoven with at least one other spring thereby forming an entirely polymer-coated structure.
摘要:
The present invention relates to a tire puncture sealant and a pneumatic tire containing such puncture sealant as a built-in puncture sealant. The sealant composition contains silica reinforcement and butyl rubber depolymerized in the presence of a balanced and cooperative combination of organoperoxides comprised of a minor amount of 4,4-di(tertiary butylperoxy) valerate depolymerization initiator and a major amount of dicumyl peroxide depolymerization propagator, the combination of which has been observed to have a synergistic effect.
摘要:
The present invention provides for oxygen scavenging materials and uses thereof for reducing oxygen content in an air cavity of a mounted tire, such as to reduce oxidation of a tire. The oxygen scavenging material can include a metal or metal-based material, an antioxidant, or microorganism. In one example, the oxygen scavenging material may be situated or secured within a tire cavity or secured to the tire rim of a wheel prior to mounting of the tire on the rim. Accordingly, the tire is mounted on the tire rim to define an air cavity with the oxygen scavenging material being located therein. The air cavity is be filled with air comprising oxygen to a desired internal air pressure with the oxygen scavenging material being provided in an amount sufficient for reducing oxygen content in the air cavity, such as to reduce oxidation of the tire thereby increasing the lifespan thereof.
摘要:
A method for detecting leakage of an expansion vessel 14 that, in an inflated form, occupies or has occupied at least a portion of a cavity 24 of an elastomeric article. The method includes the step of adding a tracer gas to a pressurized fluid. The method is characterized by the step of examining the atmosphere within the cavity of the elastomeric article, not within the expansion vessel, for evidence indicating that a portion of the tracer gas has escaped from the expansion vessel.
摘要:
An apparatus and method for sampling gases at elevated temperatures which is amenable to analysis in a manufacturing environment is described. In particular the method and apparatus can be used to determine accurate compositions of gas mixtures contained in blisters of elastomeric products. The device comprises a syringe 15,15a and a heated block 12,12a for receiving and holding syringe 15,15a, and for preheating or maintaining the temperature of syringe 15,15a. A thermostat may be associated with heating block 12,12a for controlling its temperature close to the temperature of a product from which a gas sample is taken. In a method of the invention, the syringe 15,15a is preheated to a temperature equal to or greater than the temperature of a sample which is to be obtained, the valve 24 is opened, the needle is used to penetrate a cavity where the sample resides, the valve 24 is closed, and the syringe is placed in heating block 12,12a where the temperature is substantially maintained until the sample gas can be analyzed.