Abstract:
A purified insulin-like growth factor binding protein (IGFBP) selected from the group consisting of insulin-like growth factor binding protein having an amino acid sequence that, preferably, is at least 70% homologous to the amino acid sequence of FIG. 1 and fragments thereof that are capable of binding to an antibody specific for the protein or to an insulin-like growth factor is described. This new IGFBP is designated herein as IGFBP-6. Recombinant DNA molecules encoding the binding proteins and subsequences thereof are also described along with recombinant microorganisms and cell lines containing the DNA molecules and methods for producing the binding proteins using recombinant hosts containing the relevant DNA molecules. Antibodies to the protein, useful in various diagnostic applications, are also described.
Abstract:
A method for controlling an automatic transmission of a motor vehicle in the event of a spontaneous gas/pedal release (FastOff). The automatic transmission is driven by an internal combustion engine which can be influenced by an accelerator pedal and a signal proportional to a pedal position is fed to an electronic transmission control in which shifting characteristic field is stored and the spontaneous gas/pedal release (FastOff) is detected and an upshift block (FFO=1) is activated when a pedal position gradient (PSTG) falls below a pedal gradient threshold (KF_PSTG). The mode of the upshift block (FFO=1) is removed when a traction operation is detected when an actual engine torque (MMM) exceeds a push-pull line (KL_ZS) stored as a function of a value equivalent to an engine rotational speed (NMO) in dependence on a vehicle acceleration/deceleration (AIST) dependent on an overall tractional resistance (GFW) and pedal gradient thresholds (KW_PSTGPOS, KW_PSTGNEG).
Abstract:
A method of determining and shifting to an optimal gear in a vehicle prior to entering a curve in a vehicle which comprises an automatic transmission. A curve speed limit is determined for an anticipated curve which is recognized by a navigation device, an anticipated road pattern and dependent on the vehicle and curve or road data, and a sportiness indicator (Ftyp). For each anticipated curve, an actual, optimal gear is determined, based on the determined curve speed limit and the sportiness indicator (FTyp) and, after determining the optimal gear, the method performs a check to determine whether or not the optimal gear deviates from the engaged gear (RGA_DEST). When a deviation is recognized and a driver reaction, which causes a deceleration of the vehicle and/or a reduction of the vehicle speed, is present, a down shift down to the actual, optimal gear occurs.
Abstract:
A load-absorbing device for initiating load forces such as cable forces or tensioning forces of sheet-like structures into supporting structures (10), with at least one bearing element (24, 80) which is anchored on the respective supporting structure (10) and to which a tie rod (40) of a load-absorbing part (36, 40) is connected, and with a connection device (50) for tension members (16; 98) which cooperates with the tie bar (40), is characterized in that the connection device (50) has at least one connection wing (66) which projects laterally from the longitudinal axis (A) and which forms at least one connection point (69a) offset with respect to the longitudinal axis (A).
Abstract:
A disc component of a clutch assembly includes, but is not limited to, one or more mounting structures. One of the mounting structures opens in a longitudinal direction of the disc component. The mounting structure is configured to receive a pre-mounted fastener on a second disc component of the clutch assembly from the longitudinal direction. The pre-mounted fastener is configured to fasten the disc component to the second component of from a lateral side of the disc component.
Abstract:
Described is a method for controlling a transmission for motor vehicles, especially an automatic transmission or an automatic gearbox, where a gear ratio (“1”, “2”, “3”, “4”, “5”, “6”) is adjusted according to operating conditions by means of pre-determined shifting programs (“0”, “Eco”, “Normal”, “Sport”, “Mountain II”, “Warm-up”, “Tip”) and corresponding specific shifting values (HS45, RS43) and where in relation to a vehicle's actual operating condition at least one special function (“Curve Recognition KE”, “Rapid Drive Pedal Release FO”, “Spontaneous Delay Vehicle SVF”, “Drive Speed Control FGR”, “Drive Dynamic control ESP”) is activated, which prevents the change from an actual gear ratio to a target gear ratio requested by a shifting program within a pre-determined operating range of a vehicle. In a first version of the method, the operating range, wherein a gear ratio change of the transmission is prevented, is changed in relation to applied specific values that depend on the operating condition. In a second version of the method it is planned that the shifting characteristics are changed in relation to applied specific values that depend on the operating condition in such a manner that the operating points of the vehicle that are defined on the side of the shift characteristics, for which gear ratio changes must be performed, are adjusted to the actual operating condition of the vehicle.
Abstract:
Described is a method for controlling a transmission for motor vehicles, especially an automatic transmission or an automatic gearbox, where a gear ratio (“1”, “2”, “3”, “4”, “5”, “6”) is adjusted according to operating conditions by means of pre-determined shifting programs (“0”, “Eco”, “Normal”, “Sport”, “Mountain II”, “Warm-up”, “Tip”) and corresponding specific shifting values (HS45, RS43) and where in relation to a vehicle's actual operating condition at least one special function (“Curve Recognition KE”, “Rapid Drive Pedal Release FO”, “Spontaneous Delay Vehicle SVF”, “Drive Speed Control FGR”, “Drive Dynamic control ESP”) is activated, which prevents the change from an actual gear ratio to a target gear ratio requested by a shifting program within a pre-determined operating range of a vehicle. In a first version of the method, the operating range, wherein a gear ratio change of the transmission is prevented, is changed in relation to applied specific values that depend on the operating condition. In a second version of the method it is planned that the shifting characteristics are changed in relation to applied specific values that depend on the operating condition in such a manner that the operating points of the vehicle that are defined on the side of the shift characteristics, for which gear ratio changes must be performed, are adjusted to the actual operating condition of the vehicle.
Abstract:
The present invention provides polynucleotide sequences (bbp) encoding a Bak Binding Protein (BBP) and fragments thereof that bind to Bak. The invention also provides a BBP which binds to Bak. The invention also provides recombinant host cells containing polynucleotides encoding BBP. The invention further provides antibodies that specifically bind to BBP. The invention further provides methods for detecting agents such as drugs that alter the binding of a BBP with a Bak protein. The invention further provides methods for detecting the presence of bbp or BBP in a biological sample, and further provides methods for modulating the levels of BBP in a cell. This invention additionally encompasses novel peptides, designated the “BBP Binding Domains” and the respective nucleotides, designated “bbpbd-1” and “bbpbd-2” which are involved in the interaction between Bak and BBP.
Abstract:
A shift device for an automatic transmission of a vehicle, particularly of a motor vehicle, is proposed in which the request to change the current ratio of the automatic transmission upon reaching preset operating states of the vehicle can be automatically generated or by manual input in a manual shifting mode. A pulse counter is here provided by way of successive pulses and manual input can be functionally interlinked wherein a shift signal can be generated depending on the linkage.
Abstract:
A load-absorbing device for introducing load forces, in particular cable forces in support devices for tent-shaped coverings and the like, has at least one load-absorbing part (9) on a supporting structure (7). The load-absorbing part (9) is provided on a transmission body (17) forming on at least part of its outer surface, a convex transmission surface (21) which transmits the load forces and which is guided on the supporting structure (7) on carrier surface formed from concave surface parts adapted to the convexity of the transmission surface (21). A load-absorbing node is formed allowing a ball joint-like mobility of the load absorbing part (9) relative to the supporting structure (7).