Abstract:
A system to perform distributed acoustic sensing (DAS) in an environment with acoustic vibrations present includes at least an optical fiber positioned in said environment, wherein the optical fiber comprises N spatial channels and N laser pulses are launched into the N spatial channels of the optical fiber and propagate over a fiber length; and one or more sensors to measure N signals of acoustic vibration amplitude and frequency from each of N spatial channels, wherein the N signals are digitally added for spatial averaging and applied to determine DAS.
Abstract:
Data is routed in a mesh network of devices that can communicate wirelessly through a plurality of technologies. One or more of such devices receive broadcast message(s) from a destination device intended to receive the data, and generate a first radio link quality metric (RLQM) value based on the broadcast message(s). A source device originates and delivers a quantum of data with an embedded first RLQM value. A set of intermediate devices relays the quantum of data if a forwarding criterion is fulfilled; the forwarding criterion is based in part on the first RLQM value and a second RLQM value generated by an intermediate device in the set of intermediate devices based on the broadcast message(s). The intermediate device exploits an optical interface to transmit the quantum of data. The destination device broadcasts an acknowledgement signal in response to receiving intended data.
Abstract:
A gas sensing system includes a signal generator including a wavelength tunable laser, the signal generator providing a first periodic signal and a second periodic signal, wherein the first periodic signal comprises a wavelength scanning signal and the second periodic signal comprises a modulation signal; an optical signal absorption path which is wavelength selective, wherein the generated signal covers at least one of the absorbance band; a signal detector that uses lock-in detection to detect a second harmonic of the second periodic signal after absorption, the signal detector further including a local reference generator, a multiplier, and a low pass filter; a local reference includes a first path (ref1) that outputs sinusoidal signal with frequency equals to that of the second signal in signal generator, and a second path (ref2) that outputs sinusoidal signal of two times ref1 frequency; and a local reference generator having a first phase shifter that is configurable from 0 to 2π and a second phase shifter that shifts 90-degree, wherein the first phase shifter is for an alignment of ref1 with the modulation signal and the second phase shifter provides 90-degree shifts for ref2 from ref1, wherein the first and second paths (ref1 and ref2) are selected by a switch, wherein the switch uses the first path during initialization and the second path for normal operation.
Abstract:
Systems and methods for encoding streams of input data using at least two nonbinary low density parity check (NB-LDPC) encoders; generating NB-LDPC coded optimum signal constellations; performing orthogonal frequency division multiplexing (OFDM) on the NB-LDPC coded four-dimensional (4-D) optimum signal constellations; generating signals using mappers, the mappers configured to assign bits of signals to the signal constellations and to associate the bits of the one or more signals with signal constellation points. Output of the 4-D mappers is modulated using a 4-D OFDM transmitter and a 4-D modulator onto a transmission medium using block coded-modulation, and the modulated output is transmitted by mode-multiplexing independent 4-D OFDM data streams onto fiber. The transmitted modulated output is received, mode-demultiplexed, and demodulated using polarization diversity receivers, one per spatial mode, channel estimation and compensation methods are performed to overcome impairments in the transmission medium; and received data is decoded using non-binary decoders.
Abstract:
A reconfigurable optical add/drop multiplexer (ROADM) system includes a transponder aggregator section with one or more transponder aggregators; N input ports and N output ports, each coupled to the transponder aggregators and to a cross-connect module having a variable optical splitter or variable optical coupler (VOS/VOC); and a controller to set the VOS/VOC into one of a Multicast & Select configuration and a Route & Combine configuration.
Abstract:
A communication system includes a primary module with: first trunk and branch input and output ports, each coupled to first in/out couplers, the first in/out couplers coupled to first circulators, and the circulators in turn coupled to first central couplers; second trunk branch input and output ports, each coupled to second in/out couplers, each of second in/out couplers coupled to second circulators; and first and second bidirectional wavelength-selective switches (WSSes) coupled to the first central couplers. The system also includes a secondary module with first trunk and branch input and output ports, each coupled to first in/out couplers, the first in/out couplers coupled to third circulators, and the circulators in turn coupled to second central couplers; second trunk branch input and output ports, each coupled to second in/out couplers, each of second in/out couplers coupled to fourth circulators, and third and fourth bidirectional wavelength-selective switches (WSSes) coupled to the second central couplers. The system further includes one or more 2×2 switches coupling the primary module WSS outputs with the secondary module WSS outputs.
Abstract:
A network apparatus used in an optical network is disclosed. The network apparatus includes one or more first tunable and temperature controlled (TTC) lasers, one or more transmitters each of which is connected to one of said one or more TTC lasers, one or more second TTC lasers, one or more digital signal processing (DSP) transponders (TPNDs) each of which is connected to one of said one or more second TTC lasers, one or more receivers, and a controller to control said one or more transmitters and said one or more DSP TPNDs, wherein said one or more transmitters defragment an optical access spectrum, and said one or more DSP TPNDs exploit a newly available spectrum. Other apparatuses, systems, and methods also are disclosed.
Abstract:
A method and system for remote sensing. The method includes applying an orbital angular momentum (OAM) mode on a light beam to generate an OAM light beam having an optical OAM spectrum, exposing a target object to the OAM light beam such that the target object absorbs energy of the OAM light beam to generate ultrasonic emissions, the ultrasonic emissions having a reflected OAM spectrum associated with the target object, and generating a high resolution image of the target object based on the reflected OAM spectrum.
Abstract:
Systems and methods are disclosed for data communication by performing RF sub-band multiplexing and demultiplexing by cascading a radio-frequency (RF) mixing module and optical dual-polarized (DP) QPSK modulator forhybrid RF/optical IQ modulation; and performing intra-transceiver optical superchannel switching through the RF sub-band multiplexing.
Abstract:
A method and system are described for providing hitless protection in a packet switched network having source nodes and destination nodes. The method includes enabling a working path and a protecting path between the source and destination nodes. The working path is non-overlapping with respect to the protecting path. The method further includes replicating traffic in a given one of the source nodes to generate replicated traffic. The method also includes forwarding the traffic and the replicated traffic through a working path and a protecting path, respectively, from the given one of the source nodes to a particular one of the destination nodes. The method additionally includes delivering a hitless-protected service in the particular one of the destination nodes by selecting traffic packets received from either the working path or the protecting path.