Abstract:
A hybrid write-assist memory system includes an array voltage supply and a static random access memory (SRAM) cell that is controlled by bit lines and a word line and employs a separable cell supply voltage coupled to the array voltage supply. Additionally, the hybrid write-assist memory system includes a supply voltage droop unit that is coupled to the SRAM cell and provides a voltage reduction of the separable cell supply voltage during a write operation. Also, the hybrid write-assist memory system includes a negative bit line unit that is coupled to the supply voltage droop unit and provides a negative bit line voltage concurrently with the voltage reduction of the separable cell supply voltage during the write operation. A method of operating a hybrid write-assist memory system is also provided.
Abstract:
A negative bit line write assist system includes an array voltage supply and a static random access memory (SRAM) cell that is coupled to the array voltage supply and controlled by bit lines during a write operation. Additionally, the negative bit line write assist system includes a bit line voltage unit that is coupled to the SRAM cell, wherein a distributed capacitance is controlled by a write assist command to provide generation of a negative bit line voltage during the write operation. A negative bit line write assist method is also provided.
Abstract:
A configurable delay circuit and a method of clock buffering. One embodiment of the configurable delay circuit includes: (1) a first delay stage electrically couplable in series to a second delay stage, the first delay stage and the second delay stage each having an input port electrically coupled to a signal source, and (2) a delay path select circuit electrically coupled between the first delay stage and the second delay stage, and operable to select between a delay path including the first delay stage and another delay path including the first delay stage and the second delay stage.
Abstract:
Disclosed are devices, systems and/or methods relating to an eight transistor (8T) static random access memory (SRAM) cell, according to one or more embodiments. In one embodiment, an SRAM storage cell is disclosed comprising a word line, a write column select line, a cross-coupled data latch, and a first NMOS switch device serially coupled to a second NMOS switch device. In this embodiment, the gate node of the first NMOS switch device is coupled to the word line, a source node of the first NMOS switch device is coupled to the cross-coupled data latch, a gate node of the second NMOS switch device is coupled to the write column select line, and a source node of the second NMOS switch device is coupled to the cross-coupled data latch.
Abstract:
A dual flip-flop circuit combines two or more flip-flip sub-circuits into a single circuit. The flip-flop circuit comprises a first flip-flop sub-circuit and a second flip-flop sub-circuit. The first flip-flop sub-circuit comprises a first storage sub-circuit configured to store a first selected input signal and transfer the first selected input signal to a first output signal when a buffered clock signal transitions between two different logic levels and a dock driver configured to receive a clock input signal, generate an inverted clock signal, and generate the buffered clock signal. The second flip-flop sub-circuit is coupled to the clock driver and configured to receive the inverted clock signal and the buffered clock signal. The second flip-flop sub-circuit comprises a second storage sub-circuit configured to store a second selected input signal and transfer the second selected input signal to a second output signal when the buffered clock signal transitions.
Abstract:
Small area low power data retention flop. In accordance with a first embodiment of the present invention, a circuit includes a master latch coupled to a data retention latch. The data retention latch is configured to operate as a slave latch to the master latch to implement a master-slave flip flop during normal operation. The data retention latch is configured to retain an output value of the master-slave flip flop during a low power data retention mode when the master latch is powered down. A single control input is configured to select between the normal operation and the low power data retention mode. The circuit may be independent of a third latch.