摘要:
This disclosure describes a relevant etiology of cancer and a novel anti-cancer therapeutic strategy, based on the discovery that a protein named serine protease inhibitor (SPIK/SPINK/PSTI) was up-regulated by hepatitis B and C virus infections consequently suppressing the cell apoptosis. Accordingly, the present disclosure provides, inter alia, an inhibitor of SPIK and/or a technology of suppression of over-expression of SPIK in cells. The inhibitors include: 1) chemical compounds, which can inhibit SPIK transcripts, protein activity, and gene expression, 2) SPIK siRNA (RNAi gene silence or dsRNA of SPIK, 3) DNA anti-sense and anti-SPIK antibody. Further, this disclosure provides methods of using the inhibitor as an anti-cancer agent to re-instate cancer cell apoptosis (e.g., serine protease dependent cell apoptosis).
摘要:
Imino sugars, such as deoxynojirimycin (DNJ), are glucose analogues that selectively inhibit cellular α-glucosidase I and II (enzymes that process N-linked glycans in glycoprotein) and exhibit broad spectrum antiviral activities against many enveloped viruses. Previously we have reported a novel DNJ derivative, OSL-95II, with antiviral activity and reduced cytotoxicity. In order to develop imino sugars with more potent antiviral activity as well as improved toxicity profile, OSL-95II was modified by diversifying the nitrogen linked alkylated side chain. The antiviral activities were initially tested in bovine viral diarrhea virus (BVDV) infected MDBK cells, yielding several imino sugar derivatives with novel structure and superior antiviral activity and toxicity profile. Furthermore, these new compounds were shown to be active against Dengue virus (DV) and West Nile virus (WNV) infection in BHK cells where potent anti-DV activity having submicromolar EC50 values and SI of greater than 900. These compounds represent a new generation of iminio sugars and their analogues, having application in the clinical treatment of infection of DV and other members of flaviviridae.
摘要:
A method for tumor screening using urine of a mammal, the method includes obtaining a total urine nucleic acid (e.g., DNA) from a urine sample of a mammal, extracting a high molecular weight urine nucleic acid (above 1000 bp) by contacting the total urine nucleic acid with an adsorbent in the presence of a buffer which promotes binding of the high molecular weight urine nucleic acid to the adsorbent, replacing the buffer which promotes binding of the high molecular weight urine nucleic acid with a buffer which promotes binding of the low molecular weight urine nucleic acid to the adsorbent, extracting the low molecular weight urine nucleic acid by contacting with the adsorbent, eluting the low molecular weight urine nucleic acid, and assaying the low molecular weight urine nucleic acid for a presence or absence of a gene sequence specific to a certain type of tumor.
摘要:
Microorganisms modified such that their growth in selective media is dependent upon the inhibition of a medically important target function are provided and utilized in methods for the screening of potential medically important compounds.
摘要:
Imino sugars, such as deoxynojirimycin (DNJ), are glucose analogues that selectively inhibit cellular α-glucosidase I and II (enzymes that process N-linked glycans in glycoprotein) and exhibit broad spectrum antiviral activities against many enveloped viruses. Previously we have reported a novel DNJ derivative, OSL-95II, with antiviral activity and reduced cytotoxicity. In order to develop imino sugars with more potent antiviral activity as well as improved toxicity profile, OSL-95II was modified by diversifying the nitrogen linked alkylated side chain. The antiviral activities were initially tested in bovine viral diarrhea virus (BVDV) infected MDBK cells, yielding several imino sugar derivatives with novel structure and superior antiviral activity and toxicity profile. Furthermore, these new compounds were shown to be active against Dengue virus (DV) and West Nile virus (WNV) infection in BHK cells where potent anti-DV activity having submicromolar EC50 values and SI of greater than 900. These compounds represent a new generation of iminio sugars and their analogues, having application in the clinical treatment of infection of DV and other members of flaviviridae.
摘要:
This invention describes a relevant etiology of cancer and a novel anti-cancer therapeutic strategy, based on the discovery that a protein named serine protease inhibitor (SPIK/SPINK/PSTI) was up-regulated by hepatitis B and C virus infections consequently suppressing the cell apoptosis. Accordingly, this invention provides an inhibitor of SPIK and/or a technology of suppression of over-expression of SPIK in cells. The inhibitors include: 1) chemical compounds, which can inhibit SPIK transcripts, protein activity, and gene expression, 2) SPIK siRNA (RNAi gene silence or dsRNA of SPIK, 3) DNA anti-sense and anti-SPIK antibody. Further, this invention provides a method of using the inhibitor as an anti-cancer agent to re-instate cancer cell apoptosis (e.g., serine protease dependent cell apoptosis). Also provided is an anti-SPIK antibody specific for an epitope comprising the first nine amino acids of intact SPIK. Further, a diagnostic kit is provided comprising at least one antibody specific for an epitope comprising the first nine amino acids of intact SPIK to diagnose patients exhibiting disease symptoms or at risk for developing a disease, wherein the disease is HBV infection, HCV infection, hepatitis, cancer or hepatic cancer.
摘要:
Provided are methods of diagnosing and/or determining treatment of non-urinary tract cancers by detecting biomarkers, and aberrant methylation in said biomarkers, in human urine samples.
摘要:
An anti-viral compounds effective against viruses belonging to the Flaviviridae family, wherein the anti-viral compounds are 1,5-dideoxy-1,5-imino-D-glucitol derivative compounds having the general formula (I) wherein R2, R3, R4 and R5 are the same or different and are selected from the group consisting of hydrogen, acyl, benzyl, alkyl, aryl, sulfonyl, phosphonyl, silyl, R6 is at least one of alkyl or branched alkyl, heteroalkyl or aryl, R6′ is a bridging group selected from at least one of bicycle[2.2.1]heptyl, bicycle[3.2.1]octyl, oxa analogs, admonyl and cubyl, n′=2-10, n″=1-10, enantiomers and stereoisomers of said compounds and physiologically acceptable salts or solvates of said compounds, enantiomer or stereoisomer.
摘要:
Pharmaceutical compositions of the invention comprise sulfamoylbenzamide derivative useful as pregenomic RNA encapsidation inhibitors, useful for the treatment of Hepatitis B virus (HBV) infection.