摘要:
A projection exposure system, in particular for microlithography, serves to generate an image of an object disposed in an object plane in an image plane. For this purpose, use is made of a light source emitting projection light, illumination optics disposed in the beam path between the light source and the object plane and projection optics disposed in the beam path between the object plane and the image plane. Disposed in the vicinity of a field plane of the illumination optics is at least one optical element that changes the angular illumination distribution of the projection light passing through. The change, impressed by the optical element, in the angular illumination distribution is non-rotationally symmetrical with respect to the optical axis. The optical element can be disposed in various angular positions around an axis perpendicular to the field plane. Such an optical element makes it possible to modify the symmetry of the angular illumination distribution flexibly.
摘要:
The disclosure relates to an optical system, such as an illumination system or a projection objective of a microlithographic projection exposure apparatus, including such an optical system having a polarization-influencing optical arrangement which permits enhanced flexibility in affording a desired polarization distribution.
摘要:
A projection objective for imaging an object arranged in an object plane of the projection objective into an image of the object lying in an image plane of the projection objective has a multiplicity of transparent optical elements and holding devices for holding the optical elements at prescribable positions along an imaging beam path of the projection objective. Each of the optical elements has an optical useful region lying in the imaging beam path and an edge region lying outside the optical useful region. At least one holding element of the holding device assigned to the optical element acts at the edge region in the region of a contact zone. At least one of the optical elements is assigned a diaphragm arrangement with a false light diaphragm arranged directly upstream of the optical element and a second false light diaphragm arranged directly downstream of the optical element. Each of the false light diaphragms is fashioned in such a way that the false light diaphragm screens at least a part of the edge region against radiation running outside the imaging beam path.
摘要:
An illumination system of a microlithographic projection exposure apparatus can include at least one transmission filter which has a different transmittance at least at two positions and which is arranged between a pupil plane and a field plane). The transmittance distribution can be determined such that it has field dependent correcting effects on the ellipticity. In some embodiments the telecentricity and/or the irradiance uniformity is not affected by this correction.
摘要:
The invention relates to a system for reducing the coherence of a wave front-emitting laser radiation, especially for a projection lens for use in semiconductor lithography, wherein a first partial beam of a laser beam incident on a surface of a resonator body is partially reflected. A second partial beam penetrates the resonator body and emerges from the resonator body at least approximately in the area of entry after a plurality of total internal reflections. The two partial beams are then Passed on jointly to an illumination plane. The resonator body is adapted, in addition to splitting the laser beam into partial beams, to modulate the wave fronts of at least one partial beam during a laser pulse. The partial beams reflected on the resonator body and penetrating the resonator body are superimposed downstream of the resonator body. The resonator body is provided with a phase plate having different local phase distribution.
摘要:
In an exposure method for exposing a substrate which is arranged in the area of an image plane of a projection objective as well as in a projection exposure system for performing that method, output radiation directed at the substrate and having an output polarization state is produced. Through variable adjustment of the output polarization state with the aid of at least one polarization manipulation device, the output polarization state can be formed to approach a nominal output polarization state. The polarization manipulation can be performed in a control loop on the basis of polarization-optical measuring data.
摘要:
In an exposure method for exposing a substrate which is arranged in the area of an image plane of a projection objective as well as in a projection exposure system for performing that method, output radiation directed at the substrate and having an output polarization state is produced. Through variable adjustment of the output polarization state with the aid of at least one polarization manipulation device, the output polarization state can be formed to approach a nominal output polarization state. The polarization manipulation can be performed in a control loop on the basis of polarization-optical measuring data.
摘要:
In an exposure method for producing an image of a pattern, arranged in the object surface of a projection objective, in the image surface of the projection objective, the mask is illuminated with illumination radiation with the aid of the illumination system. The radiation varied by the mask and which enters the projection objective is thereby produced downstream of the mask. The projection objective is transirradiated with this radiation. An astigmatic variation of the radiation varied by the mask is effected in the region of at least one pupil surface of the projection objective, the astigmatic variation being designed such that an anisotropy of properties of the radiation striking the image surface that leads to direction-dependent contrast differences is at least partially compensated. The astigmatic variation can be achieved, for example, with the aid of an elliptical diaphragm or an elliptical transmission filter.
摘要:
A beam splitter (4) arranged in a laser beam (2) and at least two beam-deflecting devices (7) are provided in a system for at least far-reaching compensation of directional and positional fluctuations in the light beam (2) produced by a laser (1), in particular for micro lithographic illuminating devices. The beam splitter (4) guides a partial beam (2a) directly onto an illuminating reference surface (3) of the illuminating device, while a further partial beam (2b) is led back to the beam splitter (4) via a detour (5) in which the at least two beam-deflecting devices (6, 7) are located, and is subsequently likewise fed to the illuminating reference surface (3).