Abstract:
Described herein are novel azo-benzene type chromophores. The chromophores are useful in photochromic compositions comprising a polymer matrix and a chromophore, wherein the chromophore is a novel azo-benzene type structure. The photochromic composition is photoresponsive upon irradiation by at least one wavelength of laser light across the visible light spectrum. Photochromic devices which comprise the novel azo-benzene type chromophore compound show significantly higher photoinduced birefringence, higher diffraction efficiency, and brighter images than devices that comprise well known azo-benzene chromophores. The photochromic composition may include a liquid crystal.
Abstract:
Described herein is a graphene material based membrane that provides selective resistance for solutes or gas while providing water permeability. A selectively permeable membrane comprising graphene oxide, reduced graphene oxide, and also functionalized or crosslinked between the graphene, that provides enhanced salt separation from water or gas permeability resistance, methods for making such membranes, and methods of using the membranes for dehydrating or removing solutes from water are also described.
Abstract:
This invention relates to an encapsulation structure comprising a luminescent wavelength conversion material for at least one solar cell or photovoltaic device which acts to enhance the solar harvesting efficiency of the solar cell device. The luminescent wavelength conversion material comprises at least one chromophore and an optically transparent polymer matrix. Application of the encapsulation structure, as disclosed herein, to solar harvesting devices, including solar cells, solar panels, and photovoltaic devices, improves the solar harvesting efficiency of the device by widening the spectrum of incoming sunlight that can be effectively converted into electricity by the device.
Abstract:
Described herein are wavelength conversion films that are easy-to-apply to solar cells, solar panels, or photovoltaic devices using an adhesive layer. The wavelength conversion films include a wavelength conversion layer with a photostable chromophore and are useful for improving the solar harvesting efficiency of solar cells, solar panels, and photovoltaic devices.
Abstract:
Described herein are crosslinked polymeric based composite membranes that provide selective resistance for gases while providing water vapor permeability. Such composite membranes have a high water/air selectivity in permeability. The methods for making such membranes and using the membranes for dehydrating or removing water vapor from gases are also described.
Abstract:
The present disclosure relates to novel photoluminescent complexes comprising a BODIPY moiety covalently bonded to a blue light absorbing moiety, a color conversion film comprising the photoluminescent complex, and a back-light unit using the same.
Abstract:
Described herein are crosslinked graphene oxide and polycarboxylic acid based composite membranes that provide selective resistance for gases while providing water vapor permeability. Such composite membranes have a high water/air selectivity in permeability. The methods for making such membranes, and using the membranes for dehydrating or removing water vapor from gases are also described.
Abstract:
Provided is an optically functional film that can contribute to the widening of the color gamut of an image display apparatus, the optically functional film being suppressed in brightness reduction and being excellent in durability. The optically functional film of the present invention includes an optically functional layer having a moisture permeability of 100 g/m2 or less, wherein the optically functional layer has an absorption peak in a wavelength band in a range of from 580 nm to 610 nm, and wherein the optically functional layer contains a compound X represented by the general formula (I) or the general formula (II).
Abstract:
The present disclosure relates to ionic compositions having hydrophobic characteristics and/or reduced corrosiveness upon application to metallic substrates. An ionic composition, which may be used as an adhesive material for selectively adhering two electroconducting surface together is also described herein, wherein the application of electromotive force to the electroconducting materials can reduce the adhesion of the adhesive material. Some embodiments provide a hydrophobic ionic debonding compound include a benzimidazolium cation and a sulfonylimide anion.
Abstract:
Described herein are protective coatings for reverse osmosis membranes comprising coating mixtures of graphene oxide crosslinked with copolymers. The crosslinked GO copolymer mixture coatings provide protection from chlorine-based defoulers of saline water and unprocessed fluids. The coated membranes described herein create a reverse osmosis structure that has excellent water flux and salt rejection. The crosslinking copolymers can comprise an optionally substituted vinyl imidazole constituent unit and an optionally substituted acrylic amide constituent unit.