Abstract:
This invention relates to an encapsulation structure comprising a luminescent wavelength conversion material for at least one solar cell or photovoltaic device which acts to enhance the solar harvesting efficiency of the solar cell device. The luminescent wavelength conversion material comprises at least one chromophore and an optically transparent polymer matrix. Application of the encapsulation structure, as disclosed herein, to solar harvesting devices, including solar cells, solar panels, and photovoltaic devices, improves the solar harvesting efficiency of the device by widening the spectrum of incoming sunlight that can be effectively converted into electricity by the device.
Abstract:
Described herein are devices for detecting the concentration of acetone gas. Some gas sensor devices comprise: a gas sensor element that includes a boron-doped the polycrystalline n-type semiconductor epsilon WO3. In addition, multi-detector gas sensor elements are also described including at least one based on the aforementioned gas sensor element where the other elements differ in material properties. In addition, methods for detecting acetone gas based on the disclosed elements are also described.
Abstract:
A breath sensor apparatus for detecting the presence of a compound in an exhaled gas sample, the apparatus comprising a chamber for retaining a gas sample, the chamber defining a gas inlet and a gas outlet, a sensor inside the chamber for analyzing the gas sample, an airflow disrupting element disposed proximate to the sensor to affect the airflow near the device, and an airflow reducing element disposed over the gas outlet to increase the retention time of the gas sample within the chamber.
Abstract:
This invention relates to an encapsulation structure comprising a luminescent wavelength conversion material for at least one solar cell or photovoltaic device which acts to enhance the solar harvesting efficiency of the solar cell device. The luminescent wavelength conversion material comprises at least one chromophore and an optically transparent polymer matrix. Application of the encapsulation structure, as disclosed herein, to solar harvesting devices, including solar cells, solar panels, and photovoltaic devices, improves the solar harvesting efficiency of the device by widening the spectrum of incoming sunlight that can be effectively converted into electricity by the device.
Abstract:
Described herein are wavelength conversion films that are easy-to-apply to solar cells, solar panels, or photovoltaic devices using an adhesive layer. The wavelength conversion films include a wavelength conversion layer with a photostable chromophore and are useful for improving the solar harvesting efficiency of solar cells, solar panels, and photovoltaic devices.
Abstract:
Described herein are wavelength conversion films that are easy-to-apply to solar cells, solar panels, or photovoltaic devices using an adhesive layer. The wavelength conversion films include a wavelength conversion layer with a photostable chromophore and are useful for improving the solar harvesting efficiency of solar cells, solar panels, and photovoltaic devices.
Abstract:
Described herein are devices for detecting the concentration of acetone gas. Some gas sensor devices comprise: a gas sensor element that includes a boron-doped the polycrystalline n-type semiconductor epsilon WO3. In addition, multi-detector gas sensor elements are also described including at least one based on the aforementioned gas sensor element where the other elements differ in material properties. In addition, methods for detecting acetone gas based on the disclosed elements are also described.