Abstract:
One embodiment provides a method to store electrical energy in an electronic device, which has a central processing unit (CPU) to provide operating-system and application processing in the device. The method includes controlling, from the CPU of the electronic device, communication sent from the device and received at a wireless charger within communication range of the device. The method further includes computing, in the CPU of the electronic device, a set-point condition for wireless energy flow from the wireless charger to an energy-storage component of the device, and regulating the wireless energy flow based on the set-point condition.
Abstract:
The present disclosure provides various approaches for smart area monitoring suitable for parking garages or other areas. These approaches may include ROI-based occupancy detection to determine whether particular parking spots are occupied by leveraging image data from image sensors, such as cameras. These approaches may also include multi-sensor object tracking using multiple sensors that are distributed across an area that leverage both image data and spatial information regarding the area, to provide precise object tracking across the sensors. Further approaches relate to various architectures and configurations for smart area monitoring systems, as well as visualization and processing techniques. For example, as opposed to presenting video of an area captured by cameras, 3D renderings may be generated and played from metadata extracted from sensors around the area.
Abstract:
The present disclosure provides various approaches for smart area monitoring suitable for parking garages or other areas. These approaches may include ROI-based occupancy detection to determine whether particular parking spots are occupied by leveraging image data from image sensors, such as cameras. These approaches may also include multi-sensor object tracking using multiple sensors that are distributed across an area that leverage both image data and spatial information regarding the area, to provide precise object tracking across the sensors. Further approaches relate to various architectures and configurations for smart area monitoring systems, as well as visualization and processing techniques. For example, as opposed to presenting video of an area captured by cameras, 3D renderings may be generated and played from metadata extracted from sensors around the area.
Abstract:
The present disclosure provides various approaches for smart area monitoring suitable for parking garages or other areas. These approaches may include ROI-based occupancy detection to determine whether particular parking spots are occupied by leveraging image data from image sensors, such as cameras. These approaches may also include multi-sensor object tracking using multiple sensors that are distributed across an area that leverage both image data and spatial information regarding the area, to provide precise object tracking across the sensors. Further approaches relate to various architectures and configurations for smart area monitoring systems, as well as visualization and processing techniques. For example, as opposed to presenting video of an area captured by cameras, 3D renderings may be generated and played from metadata extracted from sensors around the area.
Abstract:
Signaling touch screen enabled devices is disclosed. A capacitive stylus has a body suitable for being hand held as a writing instrument. The body has a tip for interfacing with a capacitive touch screen display panel of a computer system. The stylus has an insulator disposed near its tip, which insulates capacitance of the stylus body. A switch selectively couples the tip to the remaining parts of the stylus body. A controller controls the switch. A mode selector on the body is responsive to being pressed to signal the controller for selecting one of multiple modes. The controller is configured to enter the selected mode responsive to the mode selector and is configured to control the switch unit to switch according to different signal patterns depending on a mode entered by the controller.
Abstract:
A solution is proposed that allows power savings via enhancement of pixel data to compensate for reducing backlight intensity levels. According to one embodiment, each pixel of a display is sorted according to the brightness (intensity) of the pixel. Regional pixel gains are calculated and applied on a per pixel basis so as not to exceed a quality threshold. The intensity of the backlight corresponding to each region may be decreased by an equivalent amount, thereby reducing (potentially significantly) the power consumed to operate the backlight while maintaining the color intensity in the image due to the applied pixel gains.
Abstract:
A touch screen system includes a touch screen that provides touch information in response to a touch event. The touch screen system also includes a rapid response display controller having a reactive interpretation unit that provides an initial display representation of the touch information and a reactive feedback unit that provides the initial display representation to the touch screen for an initial display. The touch screen system further includes a routine response display controller that additionally receives the touch information and provides a final display representation of the touch information to the touch screen for a final display. A method of touch screen display management is also included.
Abstract:
Operating touch screen enabled electronic devices is described. A contact of a capacitive stylus with a capacitive touch screen display panel is detected. A stylus tip characteristic is determined in relation to a contact surface of the touch screen display panel and the capacitive stylus based on the detection of the contact therewith and a size of the contact surface. An input by a user is communicated to the application based on the determined stylus tip characteristic or a capacitive signature of the stylus.
Abstract:
A touch-screen input/output device including a touch sensor, a display, a display control module, a touch sensor control module and a synchronizer module. The touch sensor is overlaid on a display. The display control module is communicatively coupled to the display and converts video data into a serial bit stream video display signal include one or more blanking intervals. The touch sensor control module is communicatively coupled to the touch sensor and determines touch events and location of the touch event on the touch sensor during one or more touch sensor scan cycles. The synchronizer module is communicatively coupled between the display control module and the touch sensor control module, and interleaves the one or more touch sensor scan cycles with the one or more blanking intervals of the video display signal.