Abstract:
In at least one embodiment, an organic optoelectronic component, which is preferably an organic light emitting diode, includes a first electrode layer, a second electrode layer and an organic layer sequence situated between the electrode layers. Furthermore, the component includes a light-transmissive current confinement layer, which is fitted over the whole area between the first electrode layer and the organic layer sequence, such that the organic layer sequence is spaced apart from the first electrode layer. The current confinement layer is produced continuously from a common starting material and is structured by treatment and/or by action of temperature into at least one conductive region having a high electrical conductivity and into at least one insulating region having a low electrical conductivity. These electrical conductivities differ from one another by at least a factor of 10.
Abstract:
A method for producing an optoelectronic component includes forming an optoelectronic layer structure including a functional layer structure above a carrier, forming a frame structure including a first metallic material on the optoelectronic layer structure such that a region above the functional layer structure is free of the frame structure and that the frame structure surrounds the region, forming an adhesion layer including a second metallic material above a covering body, applying a liquid first alloy to the optoelectronic layer structure and/or to the adhesion layer of the covering body in the region, coupling the covering body to the optoelectronic layer structure such that the adhesion layer is coupled to the frame structure and the liquid first alloy is in direct contact with the adhesion layer and the frame structure, and reacting part of the first alloy chemically with the metallic materials of the frame structure and the adhesion layer.
Abstract:
A method for producing an optoelectronic component may include forming an optoelectronic layer structure having a first adhesion layer, which comprises a first metallic material, above a carrier, providing a covering body with a second adhesion layer, which comprises a second metallic material, applying a first alloy to one of the two adhesion layers, the melting point of the first alloy being so low that the first alloy is liquid, coupling the covering body to the optoelectronic layer structure in such a way that both adhesion layers are in direct contact with the liquid first alloy, and reacting at least part of the liquid first alloy chemically with the metallic materials, as a result of which at least one second alloy is formed, which has a higher melting point than the first alloy, wherein the second alloy solidifies and fixedly connects the covering body to the optoelectronic layer structure.
Abstract:
In various embodiments, an optoelectronic component is provided. The optoelectronic component may include a first electrode having a first electrically conductive substance, a second electrode having a second electrically conductive substance, and at least one active substance. The active substance is formed within a current path of the first electrode and/or the second electrode, and the active substance is set up to convert the first electrically conductive substance and/or the second electrically conductive substance to an electrically nonconductive substance or region.
Abstract:
An optoelectronic component may include a carrier, a first electrode over the carrier, an organically functional layer structure over the first electrode, a second electrode over the organically functional layer structure, and an encapsulation layer structure over the second electrode, the encapsulation layer structure encapsulating the organically functional layer structure and including a first layer structure facing toward the second electrode and a second layer structure facing away from the second electrode, the first layer structure alternately including first layers having a first expansion coefficient and second layers having a second expansion coefficient, which is not equal to the first expansion coefficient, and the second layer structure alternately including third layers having a third expansion coefficient and fourth layers having a fourth expansion coefficient, which is not equal to the third expansion coefficient.
Abstract:
An optoelectronic component is provided with a carrier; a zinc oxide layer arranged on the carrier and having the first and second regions, wherein the first region is a first electrode structure which is doped with aluminum so that the first region is transparent and electrically conductive; an organic optically functional layer structure arranged at least partially over the first electrode structure; and a second electrode structure arranged at least partially over the organic optically functional layer structure. The first and second electrode structures electrically contact the organic optically functional layer structure. The zinc oxide layer has a lower doping in the second region than the first electrode structure. The zinc oxide layer is configured in the second region as a varistor layer structure, which is arranged between the first and second electrode structures and contacts the two electrode structures. The varistor layer structure adjoins the optically transparent first region.
Abstract:
In various embodiments, an optoelectronic component is provided. The optoelectronic component may include a first electrode having a first electrically conductive substance, a second electrode having a second electrically conductive substance, and at least one active substance. The active substance is formed within a current path of the first electrode and/or the second electrode, and the active substance is set up to convert the first electrically conductive substance and/or the second electrically conductive substance to an electrically nonconductive substance or region.
Abstract:
A method is specified for operating an organic optoelectronic component, which has at least one organic light-emitting element having an organic functional layer stack with at least one organic light-emitting layer between two electrodes and at least one organic light-emitting element having an organic light-detecting layer. These elements are arranged on a common substrate in laterally adjacent area regions. The at least one organic light-detecting element detects ambient light, which is incident onto the organic optoelectronic component. The intensity of the light emitted by the at least one organic light-emitting element is regulated depending on a signal of the at least one organic light-detecting element with a characteristic signal form.
Abstract:
Various embodiments may relate to an optoelectronic component device, including a first optically active structure, which is configured to provide an electromagnetic radiation, a measuring structure, which is configured to determine the luminance distribution of the electromagnetic radiation, wherein the measuring structure is configured to determine the luminance distribution in the first optically active structure, and wherein the measurement structure has a plurality of second optically active structures, wherein the plurality of second optically active structures are configured as optoelectric components and/or optoelectronic components, which receive the provided electromagnetic radiation.
Abstract:
A method is specified for operating an organic optoelectronic component, which has at least one organic light-emitting element having an organic functional layer stack with at least one organic light-emitting layer between two electrodes and at least one organic light-emitting element having an organic light-detecting layer. These elements are arranged on a common substrate in laterally adjacent area regions. The at least one organic light-detecting element detects ambient light, which is incident onto the organic optoelectronic component. The intensity of the light emitted by the at least one organic light-emitting element is regulated depending on a signal of the at least one organic light-detecting element with a characteristic signal form.