NANOCRYSTAL-SIZED CERIUM-ZIRCONIUM OXIDE MATERIAL AND METHOD OF MAKING THE SAME

    公开(公告)号:US20210300778A1

    公开(公告)日:2021-09-30

    申请号:US17345121

    申请日:2021-06-11

    Abstract: A nanocrystal-sized cerium-zirconium mixed oxide material includes at least 30% by mass zirconium oxide; between 5% to 55% by mass cerium oxide; and a total of 25% or less by mass of at least one oxide of a rare earth metal selected from the group of lanthanum, neodymium, praseodymium, or yttrium. The nanocrystal-sized cerium-zirconium mixed oxide exhibits hierarchically ordered aggregates having a d50 particle size less than 1.5 μm and a total pore volume after calcination at a temperature of 600° C. or more that is at least 0.7 cm3/g with a fraction of pores between 2 nm to 10 nm being less than 15%. The nanocrystal-sized cerium-zirconium mixed oxide material is prepared using a co-precipitation method followed by milling the dried and calcined oxide material. The nanocrystal-sized cerium-zirconium mixed oxide material forms a particulate filter that may be used in an exhaust system arising from a gas or diesel engine.

    Method of making mesoporous zirconium-based mixed oxides

    公开(公告)号:US10882755B2

    公开(公告)日:2021-01-05

    申请号:US16088858

    申请日:2017-03-30

    Abstract: Mesoporous, zirconium-based mixed oxides and a method of making the same comprises: injecting a polyvalent metal-containing solution into an electrolyte solution to form a mother liquor; forming a precipitate; aging the precipitate in the mother liquor to form the mixed oxides; washing the mixed oxides with an aqueous medium; drying and collecting the mixed oxides. The pH of the electrolyte solution exceeds the isoelectric point for zirconium-based mixed oxides. The mixed oxides exhibit a single particle size distribution, improved Ce02 reducibility in the presence of Rhodium, a decrease in surface area after calcination (800-1100° C.) that is not more than 55%, and a tetragonal/cubic structure after calcination. After calcination at 1100° C. for 10 hours in air, the mixed oxides exhibit a surface area >25 m2/g, a pore volume >0.20 cm3/g, an average pore size >30 nm, and an average crystallite size between 8-15 nm.

    ZEOLITE COATED ON ELECTRODES FOR BATTERIES

    公开(公告)号:US20250118862A1

    公开(公告)日:2025-04-10

    申请号:US18695507

    申请日:2022-09-28

    Abstract: A cell for use in an electrochemical cell, that includes a positive electrode, a negative electrode, an electrolyte, and a separator in the form of a zeolite-based material comprising one or more naturally occurring or synthetically synthesized zeolites applied directly to at least one of the positive electrode and the negative electrode. The positive electrode configured so that non-reactive metal ions are reversibly extracted there from and inserted therein. The negative electrode configured to reversibly accept and release the non-reactive metal ions. The electrolyte positioned between and in contact with the negative electrode and the positive electrode, such that the electrolyte supports a reversible flow of the non-reactive metal ions between the positive electrode and the negative electrode. The separator being configured to electrically isolate the positive electrode from the negative electrode, while being permeable to the reversible flow of the non-reactive metal ions there through.

    ELECTROLYTE TREATMENT SYSTEM AND METHOD

    公开(公告)号:US20220379284A1

    公开(公告)日:2022-12-01

    申请号:US17740403

    申请日:2022-05-10

    Abstract: An apparatus, system, and method for removing impurities from a non-aqueous electrolyte used in an electrochemical cell. The apparatus includes a vessel having one or more chambers with an inlet and an outlet configured to allow the flow of the electrolyte through the one or more chambers; and an inorganic scavenging agent located within the one or more chambers. The inorganic scavenging agent includes one or more types of zeolite particles, at least one type of absorbent filler particles, or a combination of the zeolite and absorbent filler particles. The inorganic scavenging agent absorbs one or more of moisture, free transition metal ions, or hydrogen fluoride (HF) that is present as impurities in the non-aqueous electrolyte.

    INORGANIC MATERIALS FOR COMPOSITE SEPARATOR IN ELECTROCHEMICAL CELLS

    公开(公告)号:US20220376357A1

    公开(公告)日:2022-11-24

    申请号:US17772268

    申请日:2020-10-30

    Abstract: An electrochemical cell that includes a positive electrode with an active material acting as a cathode; a negative electrode with an active material acting as an anode; a non-aqueous electrolyte; and a separator placed between the positive electrode and negative electrode. In one embodiment, the separator includes an inorganic material, i.e., a type of boehmite, formed of nanometer-sized particles and optionally one or more binders and/or ceramic particles. In a second embodiment, at least one of the cathode, the anode, the electrolyte, and the separator includes the boehmite particles, which absorb one or more of moisture and/or hydrogen fluoride that become present in the cell. One or more of the cells may be combined in a housing to form a lithium-ion secondary battery.

    METHOD OF CONTINUOUSLY PRODUCING NANO-SIZED AEI-TYPE ZEOLITES

    公开(公告)号:US20220153600A1

    公开(公告)日:2022-05-19

    申请号:US17433409

    申请日:2020-04-09

    Abstract: A method of continuously forming AEI-type zeolites in a tubular reactor via a hydrothermal synthesis. A gel composition formed upon using this method includes one or more sources of silica, alumina, organic structure directing agents (OSDA), alkali metal ions; water; and optionally zeolite seeds. This gel composition is defined by the molar ratios of SiO2/AI2O3 15:1 to 100:1; M2O/SiO2 0.15:1 to 0.30:1; ROH/SiO2 0.05:1 to 0.2:1; and H2O/SiO2 5:1 to 20:1; wherein M is the alkali metal ion and R is an organic moiety derived from the OSDA. This gel composition, after reacting at a temperature between 180° C. to about 220° C. for less than 2 hours forms the crystalline AEI-type zeolite having a silica to alumina ratio (SiO2/AI2O3) that is greater than 14:1.

Patent Agency Ranking