Abstract:
A liquid crystal display device includes first and second substrates with a liquid crystal therebetween, a thin film transistor on the first substrate, a color filter layer of different colored layers between the liquid crystal and the thin film transistor, and an electrode structure layer between the liquid crystal and the color filter layer. The electrode structure layer includes a transparent insulating film, and first and second transparent conductive films formed on opposite sides of the transparent insulating film. The color filter layer includes a first region formed of one colored layer, and a second region formed of at least two laminated different colored layers. The first transparent conductive film covers an upper surface of the color filter layer in both of the first and second regions.
Abstract:
A display device with a touch detection function includes a first substrate including a plurality of gate lines, a plurality of data lines, a plurality of pixel electrodes, and a plurality of touch sensor electrodes; and a second substrate that is disposed opposite the first substrate. The first substrate is disposed on a touch operation side with respect to the second substrate, and a part of the plurality of touch sensor electrodes is disposed in a peripheral region located outside an image display region.
Abstract:
Provided is a liquid crystal display device including: gate lines formed in a first direction on a second transparent substrate; data lines formed in a second direction; first transparent common electrodes; a protective insulating film; transparent pixel electrodes arranged in the first direction and the second direction and formed so as to be opposed to the first transparent common electrodes on a surface of the protective insulating film; thin film transistors connected to the transparent pixel electrodes; a second transparent common electrode formed on the surface of the protective insulating film; and a liquid crystal layer formed on the protective insulating film, the transparent pixel electrodes, and the second transparent common electrode. The second transparent common electrode covers the gate lines and the data lines through intermediation of the protective insulating film.
Abstract:
A display device includes a plurality of pixels arranged in a matrix. Each of the plurality of pixels includes a transistor and a pixel electrode arranged above the transistor through a first protective film and a second protective film. Among the plurality of pixels, the pixel electrodes of two pixels adjacent in a column direction are connected to corresponding source electrodes of the two pixels through second and third contact holes respectively. The second and third contact holes are formed in the first protective film within a first contact hole that is formed in the second protective film.
Abstract:
An embedded touch screen, including: a first substrate including, on a front surface thereof, a plurality of detecting electrodes extending in a second direction; a second substrate having an image region in which a plurality of pixels are arranged in matrix, the second substrate including: a pixel electrode connected to corresponding one of the plurality of video signal lines via a switching element connected to corresponding one of the plurality of scanning signal lines in each of the plurality of pixels; and a common electrode; a liquid crystal layer sandwiched between the first substrate and the second substrate; an application circuit for applying an alternating signal to the pixel electrode; a detection circuit for detecting a signal excited on the corresponding one of the plurality of detecting electrodes; and a scanning circuit for scanning the pixel electrode in the second direction during detection by the detection circuit.
Abstract:
A gate line (40) has a two-layered structure comprising a lower gate line (40a) made of material identical to a pixel electrode (70), and positioned in the same layer as the pixel electrode (70), and an upper gate line (40b) layered on the lower gate line (40b), and made of material having a higher electrical conductivity than the transparent conductive material. According to this structure, it is possible to reduce the number of times performing exposure processes in manufacturing an in-plane switching type liquid crystal panel.
Abstract:
A display device includes a plurality of pixels arranged in a matrix. Each of the plurality of pixels includes a transistor and a pixel electrode arranged above the transistor through a first protective film and a second protective film. Among the plurality of pixels, the pixel electrodes of two pixels adjacent in a column direction are connected to corresponding source electrodes of the two pixels through second and third contact holes respectively. The second and third contact holes are formed in the first protective film within a first contact hole that is formed in the second protective film.
Abstract:
A liquid crystal display includes a first substrate and a second substrate opposed to each other with a liquid crystal layer between the first substrate and the second substrate. The first substrate has a plurality of drain signal lines and a plurality of gate signal lines, and a plurality of pixel regions are defined by the drain signal lines and the gate signal lines. Each of the pixel regions includes a first electrode having a plurality of strip-like portions extending in an extension direction of the drain signal lines, the strip-like portions having at least one bent portion so that extension directions of each two parts of the strip-like portions separated by the at least one bent portion are different from each other, and a second electrode formed between the first substrate and the first electrode, and being overlapped with the strip-like portions in plan view.
Abstract:
A liquid crystal display includes a first substrate and a second substrate opposed to each other with a liquid crystal layer between the first substrate and the second substrate. The first substrate has a plurality of drain signal lines and a plurality of gate signal lines, and a plurality of pixel regions are defined by the drain signal lines and the gate signal lines. Each of the pixel regions includes a first electrode having a plurality of strip-like portions extending in an extension direction of the drain signal lines, the strip-like portions having at least one bent portion so that extension directions of each two parts of the strip-like portions separated by the at least one bent portion are different from each other, and a second electrode formed between the first substrate and the first electrode, and being overlapped with the strip-like portions in plan view.
Abstract:
A liquid crystal display device includes a lower electrode and a plurality of upper electrodes opposed to the lower electrode formed in the first substrate. At least one first upper electrode and at least one second upper electrode of the plurality of upper electrodes are formed in each of the plurality of pixels. Each of the first upper electrodes has a plurality of slits that extend in a first direction, each of the second upper electrodes has a plurality of slits that extend in a second direction which is different from the first direction, and the first and second upper electrodes are electrically isolated from each other.