Abstract:
A limiting orifice through-air-drying apparatus for papermaking or other absorbent embryonic webs. The apparatus has a first zone and a second zone. The first zone is maintained at a differential pressure less than the breakthrough pressure, while the second zone is maintained at a differential pressure greater than the breakthrough pressure. The residence time of the embryonic web to be dried with the apparatus is maintained at preferably less than 35 milliseconds on the first zone. Using the dual zone system described above, the overall energy required to run the apparatus can be reduced.
Abstract:
Tissue paper having an enhanced bulk and tactile softness through incorporation of an effective amount of a polyhydroxy compound and an oil is disclosed. Preferably, from about 0.05% to about 2.0% of the polyhydroxy compound, on a dry fiber weight basis, and from about 0.05% to about 2.0% of an oil, on a dry fiber weight basis, are incorporated in the tissue paper. These nonionic compounds have high rates of retention when applied to wet tissue paper webs according to the process described herein. Tissue embodiments of the present invention may further comprise a quantity of strength additive, such as starch, to increase paper strength.
Abstract:
Tissue paper products comprising a two component chemical softener composition and binder materials, either permanent or temporary wet strength binders, and/or dry strength binders are disclosed. The two component chemical softening composition comprises a quaternary ammonium compound and a polysiloxane compound. Preferred quaternary ammonium compounds include dialkyl dimethyl ammonium salts such as di(hydrogenated)tallow dimethyl ammonium chloride and/or di(hydrogenated)tallow dimethyl ammonium methyl sulfate. Preferred polysiloxanes include amino-functional polydimethyl polysiloxanes wherein less than about 10 mole percent of the side chains on the polymer contain an amino-functional group.
Abstract:
A backside textured papermaking belt is disclosed which is comprised of a framework and a reinforcing structure. The framework has a first surface which defines the paper-contacting side of the belt, a second surface opposite the first surface, and conduits which extend between first and second surfaces of the belt. The first surface of the framework has a paper side network formed therein which defines the conduits. The second surface of the framework has a backside network with passageways that provide surface texture irregularities in the backside network. The papermaking belt is made by applying a coating of photosensitive resinous material to a reinforcing structure which has opaque portions, and then exposing the photosensitive resinous material to light of an activating wavelength through a mask which has transparent and opaque regions and also through the reinforcing structure. A process for making paper products is also disclosed which involves applying a fluid pressure differential from a vacuum source through the belt to a partially-formed embryonic web of papermaking fibers. The fibers in the embryonic web are deflected into the conduits of the papermaking belt by the vacuum pressure while the papermaking belt and the embryonic web travel over the vacuum source. Following the deflection, the paper web is impressed with the paper side network of the belt, and dried to form the final product.
Abstract:
A limiting orifice through-air-drying apparatus for papermaking or other absorbent embryonic webs. The apparatus has a first zone and a second zone. The first zone is maintained at a differential pressure less than the breakthrough pressure, while the second zone is maintained at a differential pressure greater than the breakthrough pressure. The residence time of the embryonic web to be dried with the apparatus is maintained at preferably less than 35 milliseconds on the first zone. Using the dual zone system described above, the overall energy required to run the apparatus can be reduced.
Abstract:
Disclosed herein is a cellulosic fibrous structure having multiple regions distinguished from one another by basis weight. The structure is a paper having an essentially continuous high basis weight network, and discrete regions of low basis weight which circumscribe discrete regions of intermediate basis weight. The cellulosic fibers forming the low basis weight regions may be radially oriented relative to the centers of the regions. The paper may be formed by using a forming belt having zones with different flow resistances. The basis weight of a region of the paper is generally inversely proportional to the flow resistance of the zone of the forming belt, upon which such region was formed. The zones of different flow resistances provide for selectively draining a liquid carrier having suspended cellulosic fibers through the different zones of the forming belt.
Abstract:
A method and apparatus for drying of a cellulosic fibrous structure having constant basis weight and/or density or multiple regions varying in basis weight and/or density. Such a cellulosic fibrous structure may have a nonuniform moisture distribution prior to drying by the disclosed method and apparatus. An equally or more uniform moisture distribution is achieved by providing a micropore medium in the air flow path which has a greater flow resistance than the interstices between the fibers in the cellulosic fibrous structure web. The micropore medium is the limiting orifice in the air flow used in the drying process. The micropore medium may be executed in a laminate of plural laminae, each of successively increasing or decreasing pore size. This arrangement provides the advantage that minimal sagging or deformation of each lamina into the next coarser lamina occurs and lateral air flow between the micropore medium and the cellulosic fibrous structure is reduced. The micropore medium may be disposed either upstream or downstream in the air flow path of the cellulosic fibrous structure to be through-air dried.
Abstract:
Biodegradable chemical softening compositions are provided comprising a mixture of a quaternized ester-amine compound and a polyhydroxy compound. Preferred biodegradable quaternized ester-amine compounds include diester dialkyl dimethyl ammonium salts such as diester ditallow dimethyl ammonium chloride, diester di(touch hydrogenated)tallow dimethyl ammonium chloride and diester di(hydrogenated)tallow dimethyl ammonium chloride. Preferred polyhydroxy compounds are selected from the group consisting of glycerol, and polyethylene glycols and polypropylene glycols having a weight average molecular weight from about 200 to 4000.The biodegradable chemical softening compositions are prepared by first mixing the quaternized ester-amine compound into the polyhydroxy compound at a specific temperature range wherein the polyhydroxy compound is miscible with the quaternized ester-amine compound and then diluting the mixture with a liquid carrier at a specific pH and temperature range to form an aqueous vesicle dispersion suitable for treating fibrous cellulosic material. The biodegradable chemical softening compositions disclosed herein are primarily intended for softening disposable paper products such as tissues and towels. However, the biodegradable chemical softening compositions can also be used to soften fibrous cellulosic materials in textile form.
Abstract:
Multi-ply facial tissue paper products comprising chemical softener compositions and a combination of a wet strength binder, permanent and/or temporary, and a dry strength binder is disclosed.The multi-ply facial tissue paper products contain a chemical softening composition comprising a mixture of a quaternary ammonium compound and a polyhydroxy compound. Preferred quaternary ammonium compounds include dialkyl dimethyl ammonium salts such as di(hydrogenated)tallow dimethyl ammonium chloride and/or di(hydrogenated)tallow dimethyl ammonium methyl sulfate. Preferred polyhydroxy compounds are selected from the group consisting of glycerol, polyglycerols having a weight average molecular weight of from about 150 to about 800, polyoxyethylene glycols and polyoxypropylene glycols having a weight average molecular weight from about 200 to 1000. The multi-ply facial tissue paper products also contain an effective amount of a wet strength binder, permanent and/or temporary, and a dry strength binder to control linting and/or to offset the loss in tensile strength, if any, resulting from the use of the chemical softening compositions. The use of both wet strength binder, either permanent ot temporary, and a dry strength binder also improves the retention of the chemical softening composition in the sheet.Preferably, the majority of the chemical softening compositions will be disposed on the outer layers of the multi-ply facial tissue paper products where they are most effective. In other words, the chemical softening compositions and the wet strength binder, permanent and/or temporary, and a dry strength binder can be selectively distributed within the multi-ply facial tissue paper product to enhance the softness, absorbency and/or lint resistance of a particular layer or ply.
Abstract:
A cellulosic fibrous structure, such as paper. The fibrous structure has at least three intensively distinct regions. The regions are distinguished from one another by intensive properties such is basis weight, density and projected average pore size, or thickness. In one embodiment, the fibrous structure has regions of two basis weights, a high basis weight region and a low basis weight region. The high basis weight region is further subdivided into low and high density regions so that a fibrous structure having three regions is produced.A second embodiment is a four region fibrous structure. Two of the regions have generally equivalent relatively high basis weights and two of the regions having generally equivalent relatively low basis weights. The high basis weight regions and low basis weight regions are further subdivided according to relatively high and relatively low densities, so that when the high and low basis weight regions are permuted with the high and low density regions, four different regions result. The regions distinguished by density will have inversely proportionate projected average pore sizes.