Abstract:
An improved electrostatic fluid filter is disclosed which is particularly useful in high performance clean rooms for the semiconductor industry. The electrostatic fluid filter is tubular in design and has an inlet port for supplying fluid (e.g., liquid, air) to be filtered and an output port from which relatively pure fluid flows. The filter includes a high voltage conductor which is disposed along the axis of the tube and which is surrounded by a ridged polytetrafluoroethylene insulator. Fluid is directed along the length of the filter parallel to the conductor. Contaminating particles in the fluid are transformed into electrical dipoles and are attached to the high voltage conductor.
Abstract:
An improved electrostatic filter particularly for use in high performance clean rooms for the semiconductor industry is achieved by forming a layer of wires in a "plane" having corrugations along an axis perpendicular to the axes of the wires. The "plane" is designed to mate with the corrugations of a mechanical filter placed immediately upstream in the air flow path. Alternate wires of the layer are maintained electrically at opposite polarities to strengthen the fields and the corrugations permit closer movement of particles to the wires without unacceptable constriction of the air flow. A multilayered filter produces attractive field configurations, like those achieved by corrugated single plane filters herein, in the absence of a corrugated geometry.
Abstract:
A power generation system and a fuel processor for use within a power generation system. A fuel processor is connected to both a fuel supply line and a water supply line. The fuel processor reacts the hydrocarbon fuel with the water to produce hydrogen gas and raffinate gases. The hydrogen gas is directed into a hydrogen gas line. The raffinate gases are directed into a raffinate gas line. A fuel cell is powered using the hydrogen gas. A heat exchanger is provided that exchanges heat between the fuel supply line, the water supply line, the hydrogen gas line and the raffinate gas line. This enables heat to be recycled. In addition the raffinate gases also travel into a water recovery subsystem. The water recovery subsystem condenses water out of the raffinate gases The recovered water is returned to the system.
Abstract:
A system and method for taking a sample of hydrogen gas and conditioning that sample so that extremely low levels of contamination can be more accurately detected. Initially a sample of hydrogen gas is captured and isolated in a collection chamber. A hydrogen permeable membrane is provided having a first side and a second side. The first side of the hydrogen permeable membrane is exposed to the gas sample held within the collection chamber. The hydrogen gas contained within the gas sample begins to permeate through the hydrogen permeable membrane and exit the collection chamber. This causes the pressure of the gas sample within the collection chamber to decrease. Since contaminants remain in the collection chamber, the concentration of contaminants within the remaining sample increases exponentially. The residual pressure within the collection chamber is measured and converted into a contaminant level reading.
Abstract:
A hydrogen purification method that is used to separate hydrogen gas from a source gas. A hydrogen separator into which flows the source. Within the hydrogen separator is at least one hydrogen permeable tube that is made of a hydrogen permeable material. A support tube is provided for each hydrogen permeable tube. A support tube is coaxially aligned with the hydrogen permeable tube, wherein a micro-channel exists between the hydrogen permeable tube and the support tube in an area of overlap. The source gas is introduced into the micro-channel. The source gas spreads thinly over the hydrogen permeable tube in the micro-channel. The restrictions of the micro-channel cause the source gas to embody turbulent flow characteristics as it flows through the micro-channel. The turbulent flow causes the hydrogen separator to separate hydrogen from the source gas in a highly efficient manner.
Abstract:
A system and method of purifying hydrogen gas. The system includes heating elements for heating the hydrogen diffusion cell to a predetermined operational temperature. A preheater is provided for heating unpurified gases that will enter the hydrogen diffusion cell. The unpurified gases are heated to the operational temperature of the hydrogen diffusion cell before entering the hydrogen diffusion cell. In this manner, the inflow of unpurified gases into the hydrogen diffusion cell does not cause any thermal shock to the hydrogen diffusion cell. The incoming unpurified gases are heated in two ways. The unpurified gases are heated in a preheater. The unpurified gases are also heated in a heat exchanger. The heat exchanger recycles the heat from the purified hydrogen gas.
Abstract:
A hydrogen purification method that is used to separate hydrogen gas from a source gas. A hydrogen separator into which flows the source. Within the hydrogen separator is at least one hydrogen permeable tube that is made of a hydrogen permeable material. A support tube is provided for each hydrogen permeable tube. A support tube is coaxially aligned with the hydrogen permeable tube, wherein a micro-channel exists between the hydrogen permeable tube and the support tube in an area of overlap. The source gas is introduced into the micro-channel. The source gas spreads thinly over the hydrogen permeable tube in the micro-channel. The restrictions of the micro-channel cause the source gas to embody turbulent flow characteristics as it flows through the micro-channel. The turbulent flow causes the hydrogen separator to separate hydrogen from the source gas in a highly efficient manner.
Abstract:
A hydrogen purification system and method that utilizes a hydrogen separator with a novel composite structure. The hydrogen separator has a first porous layer of a hydrogen permeable material, such as a palladium alloy. A solid layer of the same hydrogen permeable material is then disposed onto the first porous layer. A pressure differential is created across the structure of the composite hydrogen separator. The porous layer of hydrogen permeable material supports the solid layer and enables the solid layer to withstand large pressure differentials. Furthermore, the porous layer of the hydrogen permeable material bonds to the solid layer, thereby greatly increasing the effective surface area of the solid layer that is exposed to hydrogen gas. Accordingly, a large flow rate of hydrogen gas can be obtained in a small amount of space.
Abstract:
A gas flow restriction device for restricting the flow rate of heated gas in a conduit. The flow restriction device is essentially a two piece assembly that includes a valve housing and a valve gate structure that sits within the housing. The valve housing has a first end, a second end and an open central passage extending from the first end to the second end. The open central passage includes a internally tapered section proximate its first end and an internally threaded section proximate its second end. The valve gate structure has a first end a second end, a externally tapered section proximate its first end and an externally threaded section proximate its second end. The valve gate structure passes into the open central passage of the valve housing so that the externally tapered section of the valve gate structure is disposed a predetermined distance within the internally tapered section of the valve housing. At this location, the externally threaded section of the valve gate structure engages the internally threaded section of the valve housing. By rotating the valve gate structure, the threaded interconnection is effected and the valve gate structure moves in relation to the valve housing.
Abstract:
A dynamically balanced ion generator is provided which incorporates a detection screen and feedback loop to ensure that the number of positive and negative ions emitted from the generator are substantially equal. The detection screen is located between the ion generating electrodes and the exit port of the device, and is contructed of conductive material which captures a predetermined percentage of ions emitted by the electrodes. The detected imbalance is corrected through a feedback loop comprising an operational amplifier circuit, a low pass filter, a balance control comparator, variable duty cycle oscillator. By varying the duty cycle of the variable duty cycle oscillator, the voltage applied to the primary of a high voltage transformer is controlled such that the relative concentrations of positive and negative ions generated may be altered to compensate for any detected imbalance.