Abstract:
Aspects described herein relate to transmitting, to a network node, assistance information indicating one or more alignment parameters related to processing transmission bursts in a discontinuous receive (DRX) mode, receiving, from at least one of the network node or a second network node, a configuration of the one or more alignment parameters, and receiving, from at least one of the network node or the second network node, a transmission burst in a DRX ON duration of a DRX cycle in the DRX mode based on the one or more alignment parameters indicated by the configuration. Other aspects relate to receiving the assistance information and configuring the one or more alignment parameters.
Abstract:
Certain aspects of the present disclosure provide techniques for staggering clients based on wireless network information. An example method generally includes obtaining, by a client from a modem, information associated with a wireless communication network. The method also includes transmitting, from the client to the server, at an application level, a first message including the information. The method further includes receiving, by the client from the server, data at a time determined based on the information.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine that the UE has received, from a network, a sufficient quantity of protocol data units (PDUs) to decode a frame. Accordingly, the UE may indicate, to the network, that the UE has decoded the frame. Similarly, the UE may determine that the network has received, from the UE, a sufficient quantity of PDUs to decode a frame. Accordingly, the UE may refrain from transmitting one or more additional PDUs associated with the frame. Additionally, or alternatively, the UE may receive, from the network, an indication to disable some feedback to the network. Accordingly, the UE may refrain from transmitting one or more feedback signals based at least in part on the indication. Numerous other aspects are described.
Abstract:
Aspects are directed towards activating out-of-order delivery (OOOD) on a user equipment (UE). An application programming interface (API) on the UE may set one or more configuration parameters for IP flows from the wireless network. The UE may then measure the IP flows from the wireless network, traffic flow templates (TFTs), and/or quality-of service flows (QFI) to identify measured IP flows from the wireless network meet the one or more configuration parameters. The UE may then activate OOOD for the IP flows from the wireless network that meet the one or more configuration parameters.
Abstract:
Various aspects include methods for QUIC packet processing. Various embodiments may include a processor of a computing device determining a round trip time (RTT) for a QUIC flow based at least in part on a spin bit value of a QUIC packet of the QUIC flow, determining a bandwidth-delay (BW-delay) product for the QUIC flow based at least in part on the determined RTT for the QUIC flow, and controlling processing of QUIC packets for the QUIC flow based at least in part on the determined BW-delay product.
Abstract:
Certain aspects of the present disclosure provide techniques for user equipment (UE)-centric clustering and efficient scheduling for coordinated multipoint (CoMP). A method for UE-centric clustering and central scheduling includes determining a UE conflict graph. Vertices in the UE conflict graph are UEs for which there is a transmission and edges between vertices are UEs that have a scheduling conflict. The method includes transmitting signaling to schedule the UEs with resources for the transmission based on the UE conflict graph. A method for UE-centric clustering and cluster scheduling includes determining a cluster graph. Vertices in the cluster graph are CoMP clusters for one or more UEs for which there is a transmission and edges between vertices are CoMP clusters that have a scheduling conflict. The method includes transmitting signaling to assign resources to the CoMP clusters based on the cluster graph.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless communication device may transmit a first transmission using a first resource, and transmit a retransmission of the first transmission using a second resource, wherein the second resource is configured from a plurality of second resources based at least in part on an interference muting configuration of the wireless communication device. Numerous other aspects are provided.
Abstract:
An electronic device obtains a device password associated with the new enrollee device to be configured for a communication network. The device password is provided to a network registrar to cause the network registrar to configure the new enrollee device for the communication network. The network registrar performs an enrollment process based upon the device password and provides feedback to the electronic device to indicate whether or not the new enrollee device was successfully added to the communication network. Alternatively, when an electronic device detects the presence of a new enrollee device to be configured for the communication network, the electronic device generates a device password for the new enrollee device and provides the device password to the new enrollee device and to the network registrar, thereby causing the network registrar to initiate an enrollment process for the new enrollee device based upon the device password.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus preserves a state of a UE in an anchor eNB, wherein the anchor eNB is one of a set of connected cells, the UE being in a connected mode. Each cell of the connected set has a corresponding coverage area. The apparatus then maintains the state of the UE in the anchor eNB when the UE moves from a coverage area of the anchor eNB to a coverage area of another one of the cells from the set of connected cells.
Abstract:
Methods and apparatus are disclosed for femtocell backhaul sharing. The method includes determining whether an available bandwidth for communication by the network entity is below a bandwidth threshold. The method includes requesting additional bandwidth from at least one neighbor network node in response to determining that the available bandwidth is below the bandwidth threshold. The method includes receiving configuration information from the at least one neighbor network node to increase the available bandwidth by at least a portion of the requested additional bandwidth.