Abstract:
Aspects of a wireless apparatus for configuring a plurality of VCOs are provided. The apparatus may be a UE. The UE receives a configuration for a plurality of carriers. Each carrier corresponds to a different LO frequency. In addition, the UE determines a VCO frequency for generating each LO frequency. Further, the UE assigns each determined VCO frequency to each of a plurality of VCO modules based on a distance between the VCO modules and each of the determined VCO frequencies. The plurality of VCO modules are of a set of VCO modules including at least three VCO modules.
Abstract:
A circuit, a method and an apparatus, are described. A radio frequency (RF) signal received from a transmission line is provided to the source of a transistor in a common-gate amplification circuit. A series resonance connected to the source provides a low impedance path to ground for interfering RF components in the RF signal. The series resonance is tuned to provide a high impedance to a band of frequencies centered on a frequency of interest and to shunt interfering RF components outside the band of frequencies centered on the frequency of interest. The interfering RF components may include a harmonic of the frequency of interest.
Abstract:
Certain aspects of the present disclosure generally relate to jamming detection for radio frequency (RF) front-end circuitry. For example, certain aspects provide an apparatus having a first counter configured to count a number of times that a power of a reception signal exceeds a first threshold. The apparatus also includes a second counter configured to count a number of measurements of the power of the reception signal. The apparatus further includes control logic having a first input coupled to an output of the first counter and having a second input coupled to an output of the second counter. The control logic is configured to determine an amount of jamming over a measurement window based on the number of times that the power of the reception signal exceeds the first threshold and on the number of measurements.
Abstract:
In certain aspects, a receiver includes first amplifiers, wherein each one of the first amplifiers comprises an input and an output. The receiver also includes second amplifiers, wherein each one of the second amplifiers comprises an input and an output, and the outputs of the second amplifiers are coupled to a combining node. The receiver also includes transmission lines, wherein each one of the transmission lines is coupled between the output of a respective one of the first amplifiers and the input of a respective one of the second amplifiers. The receiver further includes a load coupled to the combining node, and receiver elements, wherein each one of the receiver elements comprises an input and an output, and the output of each one of the receiver elements is coupled to the input of a respective one of the first amplifiers.
Abstract:
Certain aspects of the present disclosure relate to multi-band filter architectures and methods for filtering signals using the multi-band filter architectures. One example multi-band filter generally includes a transconductance-capacitance (gm-C) filter and a reconfigurable load impedance coupled to an output of the gm-C filter, the reconfigurable load impedance comprising a first gyrator circuit coupled to a second gyrator circuit.
Abstract:
Certain aspects of the present disclosure provide multi-way diversity receivers with multiple synthesizers. Such a multi-way diversity receiver may be implemented in a carrier aggregation (CA) transceiver. One example wireless reception diversity circuit generally includes three or more receive paths for processing received signals and two or more frequency synthesizing circuits configured to generate local oscillating signals to downconvert the received signals. Each of the frequency synthesizing circuits is shared by at most two of the receive paths, and each pair of the frequency synthesizing circuits may generate a pair of local oscillating signals having the same frequency.
Abstract:
In certain aspects, a circuit comprises a low noise amplifier (LNA) configured to receive a radio frequency (RF) signal, a first mixer coupled to the low noise amplifier (LNA), and a first trans-impedance filter coupled to the first mixer. The first trans-impedance filter comprises a tunable inductor and capacitor (LC) network configured to be a portion of a doubly terminated LC ladder filter and a trans-impedance amplifier (TIA) coupled to the tunable inductor and capacitor (LC) network. The circuit further comprises a second mixer coupled to the low noise amplifier (LNA) and a second trans-impedance filter coupled to the second mixer.
Abstract:
An apparatus includes a low noise amplifier (LNA) multiplexer configured to receive a plurality of radio frequency (RF) signals at a plurality of input terminals and to combine the plurality of RF signals into a combined RF signal that is output at an output terminal. The LNA multiplexer includes a plurality of input signal paths, and each input signal path is coupleable to a respective input terminal of the plurality of input terminals and is configured to receive a respective RF signal of the plurality of RF signals. The apparatus further includes an LNA demultiplexer configured to receive the combined RF signal at an input port coupled to the output terminal and to distribute the combined RF signal to a plurality of output ports, each output port of the plurality of output ports configured to output the combined RF signal to a respective downconverter of a plurality of downconverters.
Abstract:
Multiplex modules for use in carrier aggregation receivers are disclosed. In an exemplary embodiment, an apparatus includes an LNA multiplexer configured to receive a plurality of RF signals at a plurality of input terminals and to combine the RF signals into a combined RF signal that is output from an output terminal. The apparatus also includes an LNA demultiplexer configured to receive the combined RF signal at an input port that is connected to the output terminal and to distribute the combined RF signal to a plurality of output ports.
Abstract:
Methods and apparatus including: setting up a plurality of configurations for a plurality of local oscillator (LO) paths of a carrier aggregation (CA) transceiver operating with a plurality of bands; calculating and comparing frequencies for each LO path of the plurality of LO paths and at least one divider ratio of LO dividers for each band of the plurality of bands to identify frequency conflicts; and reconfiguring the LO dividers for the plurality of LO paths and the plurality of bands when the frequency conflicts are identified.