Abstract:
A method, an apparatus, and a computer program product are provided. The apparatus may be configured to establish a first call for a first subscription, and accept a second call for a second subscription while maintaining the first call. A single RF transmit chain may be scheduled for uplink transmissions associated with the first call and uplink transmissions associated with the second call. A timesharing schedule for the transmit chain may determine timing for the uplink transmissions associated with the first call is transmitted and when the uplink transmissions associated with the second call is transmitted on the transmit chain. Downlink transmissions associated with the first and second calls may be received using different receive chain. Downlink transmissions associated with the first and second calls may be received using the same receive chain.
Abstract:
A wireless communications power saving method and apparatus is provided. The method includes, when no reverse link traffic exists and no forward link traffic has been received for a predetermined amount of time, establishing, at a terminal, a reverse link transmission pilot signal duty cycle, and boosting overhead channel signal transmission power during ON slots and gating overhead channel and pilot signal transmission power during OFF slots. The design further includes estimating, at the terminal, an available data transmission rate, determining an actual data transmission rate, setting a terminal transmission duty cycle for a next period based on the estimated available data transmission rate, the actual data transmission rate, and a margin of error, and transmitting data from the terminal according to the terminal transmission duty cycle.
Abstract:
Apparatus and methods are provided to enable a ratcheting of uplink transmit power at an access terminal in a wireless communication network, such that the transmit power is maintained between an upper threshold and a lower threshold. Here, the decision whether to ratchet the power may be based on one or both of the open-loop transmit power and/or the closed-loop transmit power. Moreover, the decision whether to ratchet the transmit power may be based on the power per carrier in a multi-carrier wireless communication network. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Methods, systems, and devices for wireless communications are described. The method may include a user equipment (UE) identifying a priority scheme for a set of signals including a first set of synchronization signal block (SSB) signals associated with a first frequency range, a second set of SSB signals associated with a second frequency range, and a paging signal associated with the first frequency range. The UE may then monitor, via a narrowband processor of the UE and based on the priority scheme, a set of time resources for one or more of the first set of SSB signals, the second set of SSB signals, or the paging signal. The narrowband processor may be configured to process signals received via the first frequency range and the second frequency range.
Abstract:
Aspects of the present disclosure provide wireless communication devices and methods configured to operate with multiple active connections. A user equipment establishes a first active connection associated with a first subscription. The user equipment also establishes a second active connection, simultaneous to the first active connection, associated with a second subscription. The user equipment provides modem information corresponding to connection qualities of the first active connection and second active connection, to an operating system of the user equipment. Furthermore, the user equipment mitigates contention between the first active connection and second active connection by degrading at least one of the first active connection or second active connection in accordance with a decision given by the operating system based on the modem information.
Abstract:
Methods and apparatus for wireless communication are provided. In one aspect, an apparatus for wireless communication comprises a transmitter configured to transmit data at a first frequency on a first radio access technology. The apparatus comprises a receiver configured to receive data at the first frequency on the first radio access technology. The apparatus comprises a processor configured to tune the transmitter to the first frequency associated with the first radio access technology. The processor is configured to tune the receiver from the first frequency to a second frequency associated with a second radio access technology while the transmitter remains tuned to the first frequency associated with the first radio access technology. The processor is further configured erase data to be transmitted for the first radio access technology from at least one transmission channel slot when the first frequency and the second frequency satisfy a predetermined combination of frequencies.
Abstract:
Aspects of the present disclosure relate to a multimode user equipment (UE) that when suffering a power crunch, can intelligently reselect to another RAT to extend the battery life of the UE. The reselected RAT has a lower specified maximum transmit power relative to the currently attached RAT. Therefore, the UE may reduce its battery drain to extend its service time per charge when a call is made utilizing the reselected RAT. The UE intelligently selects the RAT that will likely consume less uplink transmit power to communicate with a base station in order to conserve battery power in a poor coverage area, when the UE is experiencing a power crunch condition.
Abstract:
Methods and apparatus for wireless communication are provided. In one aspect, an apparatus for wireless communication comprises a transmitter configured to transmit data at a first frequency on a first radio access technology. The apparatus comprises a receiver configured to receive data at the first frequency on the first radio access technology. The apparatus comprises a processor configured to tune the transmitter to the first frequency associated with the first radio access technology. The processor is configured to tune the receiver from the first frequency to a second frequency associated with a second radio access technology while the transmitter remains tuned to the first frequency associated with the first radio access technology. The processor is further configured erase data to be transmitted for the first radio access technology from at least one transmission channel slot when the first frequency and the second frequency satisfy a predetermined combination of frequencies.
Abstract:
Apparatus and methods are provided to enable a ratcheting of uplink transmit power at an access terminal in a wireless communication network, such that the transmit power is maintained between an upper threshold and a lower threshold. Here, the decision whether to ratchet the power may be based on one or both of the open-loop transmit power and/or the closed-loop transmit power. Moreover, the decision whether to ratchet the transmit power may be based on the power per carrier in a multi-carrier wireless communication network. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Aspects of the present disclosure relate to apparatuses and methods for performing adaptive receive-diversity (RxD) to improve power consumption using multiple antennas/receivers. In one aspect, a first receive-diversity (RxD) state is enabled at an access terminal utilizing two receive chains for a communication link. Link quality metrics corresponding to the communication link are determined. The access terminal selectively switches from the first RxD state to a second RxD state utilizing three or more receive chains dependent upon the link quality metrics, such that the energy per bit of the second RxD state is more energy efficient than the energy per bit of the first RxD state.