Abstract:
Methods, systems, and devices for wireless communication are described. One technique includes identifying, by a user equipment (UE), a periodic time window for the UE to access a network, and transmitting an indication of the periodic time window to the network in a random access channel transmission. The technique also describes receiving, from the network based at least in part on the periodic time window, an indication of uplink resources allocated to the UE during the identified periodic time window. Another technique includes receiving, from a UE in a random access channel transmission, an indication of a periodic time window for the UE to access the network. The technique also includes determining, based at least in part on the periodic time window, uplink resources for the UE to access the network during instances of the identified periodic time window and transmit an indication of the uplink resources.
Abstract:
Methods, devices, and systems of various embodiments are disclosed for managing a vehicle charging station having a docking terminal. In various embodiments, a priority of a first autonomous vehicle and a second autonomous vehicle may be determined for using the docking terminal when a docking request is received from the second autonomous vehicle while the first autonomous vehicle occupies the docking terminal. In some embodiments, the priorities of the first and second autonomous vehicles may be based on an available power level of each of the first and second autonomous vehicles. The first autonomous vehicle may be instructed to undock from the docking terminal in response to determining that the second autonomous vehicle has a higher priority.
Abstract:
One aspect of the present application provides a Category M apparatus that communicates over a communication network. The apparatus comprises a processor and an interface. The processor is configured to generate a message requesting registration of the apparatus with a core network, the message generated to include at least one header indicating a power saving mode capability of the apparatus. The processor is further configured to schedule sleep periods and wakeup times for the apparatus. The interface is configured to transmit the message to the core network. The interface is further configured to receive a response, from the core network, including one or more parameters and one or more timers established by the core network based at least in part on the power saving mode capability of the apparatus.
Abstract:
Methods, systems, and devices for wireless communication are described. One technique includes identifying, by a user equipment (UE), a periodic time window for the UE to access a network, and transmitting an indication of the periodic time window to the network in a random access channel transmission. The technique also describes receiving, from the network based at least in part on the periodic time window, an indication of uplink resources allocated to the UE during the identified periodic time window. Another technique includes receiving, from a UE in a random access channel transmission, an indication of a periodic time window for the UE to access the network. The technique also includes determining, based at least in part on the periodic time window, uplink resources for the UE to access the network during instances of the identified periodic time window and transmit an indication of the uplink resources.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive sensor information from a sensor associated with the user equipment, wherein the user equipment is in a deep sleep mode when the sensor information is received. The user equipment may deactivate the deep sleep mode, based at least in part on receiving the sensor information, to permit the user equipment to transmit or decode a network communication.
Abstract:
Methods, systems and devices are provided for selecting one or more target devices for device-to-device (D2D) communication with a device. A device processor may determine whether a battery power level of the device is below a threshold battery power level. The device processor may establish a received power level threshold in response to determining that the battery power level of the device is below a threshold power battery level. The device processor may determine whether a received power level of a signal from target devices for D2D communication is above the received power level threshold. In response to determining that the received power level from a target device is above the received power level threshold, the device processor may permit D2D communication with that target device.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may determine that a reselection timer has an expiration time that is to extend an active period of a discontinuous reception (DRX) cycle; determine whether to extend the active period based at least in part on at least one of a set of serving cell measurements or a duration that the expiration time is to extend the active period; and selectively extend the active period or enter a sleep mode without extending the active period based at least in part on determining whether to extend the active period. Numerous other aspects are provided.
Abstract:
Methods, devices, and systems of various embodiments are disclosed for managing an unmanned aerial vehicle (UAV). In various embodiments, the UAV may charge an onboard battery while docked at a docking terminal of a charging station. The UAV may receive a message from the charging station with an instruction to undock from the docking terminal. The UAV may undock from the docking terminal before charging of the onboard battery is complete in response to receiving the message from the charging station with the instruction to undock.
Abstract:
One aspect of the present application provides a Category M apparatus that communicates over a communication network. The apparatus comprises a processor and an interface. The processor is configured to generate a message requesting registration of the apparatus with a core network, the message generated to include at least one header indicating a power saving mode capability of the apparatus. The processor is further configured to schedule sleep periods and wakeup times for the apparatus. The interface is configured to transmit the message to the core network. The interface is further configured to receive a response, from the core network, including one or more parameters and one or more timers established by the core network based at least in part on the power saving mode capability of the apparatus.
Abstract:
Methods, systems, and devices for wireless communication are described for redirection of a session initiation protocol (SIP) INVITE. A multi-subscriber identification module user equipment (multi-SIM UE) may intelligently determine when to redirect a SIP INVITE message to control on which of multiple networks a communication session is established. The multi-SIM UE may receive a SIP INVITE from a first user equipment (UE) requesting to establish a SIP session on a first network, the SIP INVITE including a first network address of the multi-SIM UE that is associated with a first SIM of the multi-SIM UE. The multi-SIM UE may, based at least in part on determining that a redirection criterion is satisfied, transmit a SIP redirection response including a second network address of the multi-SIM UE on a second network that is associated with a second SIM of the multi-SIM