Abstract:
Systems and methods are provided for pre-charging the DC bus on a motor drive. Pre-charging techniques involve pre-charge circuitry including a manual switch, an automatic switch, and pre-charge control circuitry to switch the automatic switch between pre-charge and pre-charge bypass modes in response to an initialized pre-charge operation, input voltage sags, and so forth. In some embodiments, the pre-charge operation may be initialized by switching the manual switch closed. In some embodiments, the pre-charge operation may also be initialized by a detected voltage sag on the DC bus. The pre-charge circuitry may also be configured to disconnect to isolate a motor drive from the common DC bus under certain fault conditions.
Abstract:
An electric motor drive system includes a fan configured to cool power electronic components of the electric motor drive system. The electric motor drive system also includes a temperature sensor disposed proximate an air inlet of the fan and configured to sense an ambient temperature of air entering the air inlet. In addition, the electric motor drive system includes a processor communicatively coupled to the temperature sensor and configured to determine at least one of a drive prognostic and a derating requirement based on the sensed ambient temperature.
Abstract:
The present techniques include methods and systems for operating an inverter to maintain a lifespan of the inverter. In some embodiments, the switching frequency and/or the output current of the inverter may be changed such that stress may be reduced on the inverter bond wires of the inverter. More specifically, embodiments involve calculating the aging parameters for certain operating conditions of the inverter and determining whether the operating conditions result in aging the inverter to a point which reduces the inverter lifespan below a desired lifespan. If the operating conditions reduce the inverter lifespan below the desired lifespan, the switching frequency may be reduced to a lower or minimum switching frequency of the inverter and/or the output current of the inverter may be reduced to a maximum output current at the minimum switching frequency.
Abstract:
A method is provided for detection of a ground fault in a high resistance network in a voltage source power conversion circuit comprising a power converter that converts incoming AC power to DC power applied to a DC bus and an inverter that converts DC power from the DC bus to output AC power. The method includes detecting a midpoint-to-ground voltage between a low side of the DC bus and a ground potential and detecting the presence of a ground fault in a high resistance network based upon the detected midpoint-to-ground voltage.
Abstract:
The present techniques include methods and systems for operating an inverter to maintain a lifespan of the inverter. In some embodiments, the switching frequency and/or the output current of the inverter may be changed such that stress may be reduced on the inverter bond wires of the inverter. More specifically, embodiments involve calculating the aging parameters for certain operating conditions of the inverter and determining whether the operating conditions result in aging the inverter to a point which reduces the inverter lifespan below a desired lifespan. If the operating conditions reduce the inverter lifespan below the desired lifespan, the switching frequency may be reduced to a lower or minimum switching frequency of the inverter and/or the output current of the inverter may be reduced to a maximum output current at the minimum switching frequency.
Abstract:
A transformerless parallel active rectifier system includes N multiphase common mode inductors directly connected to a shared multiphase AC input with no intervening transformer, and N active rectifiers coupled to respective ones of the N multiphase common mode inductors and having respective DC outputs coupled to a shared DC bus, where N is an integer greater than 1. The N active rectifiers have ground current regulators and are synchronized to provide DPWM switching control signals synchronized to one another to regulate their respective ground currents and concurrently regulate the shared DC bus voltage.
Abstract:
Methods, non-transitory computer readable mediums, and power conversion systems with a controller configured to provide modulated inverter switching control signals at a first switching frequency in response to an inverter current being greater than a first threshold and less than a second threshold, the second threshold being greater than the first threshold. The controller is further configured to provide the inverter switching control signals at a second switching frequency in response to the inverter current being greater than the second threshold, and to provide the inverter switching control signals at a third switching frequency in response to the inverter current being less than the first threshold, where the second switching frequency is less than the first switching frequency and the third switching frequency is greater than the first switching frequency.
Abstract:
For motor stator resistance calculation, a method estimates an output voltage using a Direct Current (DC) bus voltage and a duty ratio for a motor drive at a first switching frequency and at least one second switching frequency. The method measures an output current at the first switching frequency and the at least one second switching frequency. The method calculates a first stator resistance for the first switching frequency and at least one second stator resistance for the at least one second switching frequency. The method estimates a stator resistance at a DC condition based on the first stator resistance and the at least one second stator resistance. The method sets a dynamic compensation based on a stator resistance error between the first switching frequency and the at least one second switching frequency.
Abstract:
An active rectifier includes first and second DC nodes, a switching circuit, and a controller configured to compute a voltage reference according to a load signal of the DC output, and a non-linear relationship between a load condition of the DC output and a DC bus voltage at the DC output, and to generate rectifier switching control signals according to the voltage reference to cause the switching circuit to convert AC input power from the AC input to control the DC bus voltage at the DC output.
Abstract:
The present techniques include methods and systems for operating converter to maintain a lifespan of the converter. In some embodiments, the operating frequency of the converter may be increased such that stress may be reduced on the bond wires of the converter. More specifically, embodiments involve calculating the aging parameters for certain operating conditions of the converter operating in a maximum power point tracking (MPPT) mode and determining whether the MPPT operation results in aging the converter to a point which reduces the converter lifespan below a desired lifespan. If the MPPT operation reduces the converter lifespan below the desired lifespan, the frequency of the converter may be increased such that the converter may be controlled to operate at a percentage of MPPT. Thus, in some embodiments, power output may be optimized with respect to maintaining a desired lifespan of the converter.