Abstract:
For reducing volume requirements and magnetic flux leakage, a compact inductor includes a first planar core with a first core thickness along a first axis orthogonal to a plane of the first planar core. In addition, the inductor includes a second planar core disposed parallel to the first planar core with a second core thickness along the first axis. The inductor further includes a plurality of electrical windings disposed between and adjacent to an inside plane of the first planar core and an inside plane of the second planar core. The electrical windings may include insulated electrical wires. No magnetic teeth may be disposed between the first planar core and the second planar core. The first axis is parallel to a magnetic axis of each electrical winding.
Abstract:
For reducing volume requirements and magnetic flux leakage, a compact inductor includes a first planar core with a first core thickness along a first axis orthogonal to a plane of the first planar core. In addition, the inductor includes a second planar core disposed parallel to the first planar core with a second core thickness along the first axis. The inductor further includes a plurality of electrical windings disposed between and adjacent to an inside plane of the first planar core and an inside plane of the second planar core. The electrical windings may include insulated electrical wires. No magnetic teeth may be disposed between the first planar core and the second planar core. The first axis is parallel to a magnetic axis of each electrical winding.
Abstract:
The present techniques include methods and systems for operating an inverter to maintain a lifespan of the inverter. In some embodiments, the switching frequency and/or the output current of the inverter may be changed such that stress may be reduced on the inverter bond wires of the inverter. More specifically, embodiments involve calculating the aging parameters for certain operating conditions of the inverter and determining whether the operating conditions result in aging the inverter to a point which reduces the inverter lifespan below a desired lifespan. If the operating conditions reduce the inverter lifespan below the desired lifespan, the switching frequency may be reduced to a lower or minimum switching frequency of the inverter and/or the output current of the inverter may be reduced to a maximum output current at the minimum switching frequency.
Abstract:
A method is provided for detection of a ground fault in a high resistance network in a voltage source power conversion circuit comprising a power converter that converts incoming AC power to DC power applied to a DC bus and an inverter that converts DC power from the DC bus to output AC power. The method includes detecting a midpoint-to-ground voltage between a low side of the DC bus and a ground potential and detecting the presence of a ground fault in a high resistance network based upon the detected midpoint-to-ground voltage.
Abstract:
The present techniques include methods and systems for operating an inverter to maintain a lifespan of the inverter. In some embodiments, the switching frequency and/or the output current of the inverter may be changed such that stress may be reduced on the inverter bond wires of the inverter. More specifically, embodiments involve calculating the aging parameters for certain operating conditions of the inverter and determining whether the operating conditions result in aging the inverter to a point which reduces the inverter lifespan below a desired lifespan. If the operating conditions reduce the inverter lifespan below the desired lifespan, the switching frequency may be reduced to a lower or minimum switching frequency of the inverter and/or the output current of the inverter may be reduced to a maximum output current at the minimum switching frequency.
Abstract:
The present techniques include methods and systems for operating converter to maintain a lifespan of the converter. In some embodiments, the operating frequency of the converter may be increased such that stress may be reduced on the bond wires of the converter. More specifically, embodiments involve calculating the aging parameters for certain operating conditions of the converter operating in a maximum power point tracking (MPPT) mode and determining whether the MPPT operation results in aging the converter to a point which reduces the converter lifespan below a desired lifespan. If the MPPT operation reduces the converter lifespan below the desired lifespan, the frequency of the converter may be increased such that the converter may be controlled to operate at a percentage of MPPT. Thus, in some embodiments, power output may be optimized with respect to maintaining a desired lifespan of the converter.
Abstract:
The present techniques include methods and systems for operating converter to maintain a lifespan of the converter. In some embodiments, the operating frequency of the converter may be increased such that stress may be reduced on the bond wires of the converter. More specifically, embodiments involve calculating the aging parameters for certain operating conditions of the converter operating in a maximum power point tracking (MPPT) mode and determining whether the MPPT operation results in aging the converter to a point which reduces the converter lifespan below a desired lifespan. If the MPPT operation reduces the converter lifespan below the desired lifespan, the frequency of the converter may be increased such that the converter may be controlled to operate at a percentage of MPPT. Thus, in some embodiments, power output may be optimized with respect to maintaining a desired lifespan of the converter.
Abstract:
A method is provided for detection of a ground fault in a high resistance network in a voltage source power conversion circuit comprising a power converter that converts incoming AC power to DC power applied to a DC bus and an inverter that converts DC power from the DC bus to output AC power. The method includes detecting a midpoint-to-ground voltage between a low side of the DC bus and a ground potential and detecting the presence of a ground fault in a high resistance network based upon the detected midpoint-to-ground voltage.
Abstract:
The present techniques include methods and systems for detecting the grounding condition of an electrical system to automatically determine a suitable electrical drive configuration. The drive includes a test resistor which may be connected or disconnected from the drive to measure different drive voltages. The measured drive voltages are analyzed to determine a type of grounding configuration of the electrical system in which the drive is to be installed. Embodiments also include determining ground resistance condition such as a high resistance ground (HRG) fault or a ground resistance fault when the drive is in operation.