Abstract:
A power conversion system can be implemented to actively control a load while compensating for reactive power which may be sourced or consumed by an input filter circuit. In one aspect, the power conversion system can receive externally supplied multi-phase AC electric power, such as three-phase power from a power grid, and use a converter circuit to generate a DC bus. The power conversion system can then use an inverter circuit to generate multi-phase AC electric power from the DC bus for driving the load with adjustable frequencies and/or amplitudes as desired. The input filter circuit can be coupled to the converter circuit to filter out harmonics resulting from switching of the converter circuit. The power conversion system can receive feedback signals which may be used to determine reactive power sourced or consumed by the filter circuit, and can adjust the converter circuit to compensate for such reactive power.
Abstract:
Methods and apparatus are presented for sampling low side inverter phase currents, in which current sampling is selectively delayed in a given PWM cycle by a non-zero sampling delay time value from a nominal sample time if the middle pulse width value is less than a non-zero first threshold to facilitate adequate signal settling for accurate current measurement, and if a middle total continuous on-time near the end of the given PWM cycle is less than a non-zero second threshold, the middle total continuous on-time is selectively extended by adding a non-zero adjustment offset time value to a middle pulse width value for a next PWM cycle.
Abstract:
Present embodiments relate to a method for synchronizing an electric grid. The method includes receiving a phase voltage of the electric grid. The method further includes determining one or more disturbance frequencies in the phase voltage via a plurality of sequential tracking filters, wherein each of the plurality of tracking filters corresponds to a harmonic of the received phase voltage. The method further includes removing the disturbance frequencies components sequentially to produce a minimally distorted frequency, and performing a PLL operation on the clean frequency to determine a phase angle of the frequency.
Abstract:
The present techniques include methods and systems for operating an inverter to maintain a lifespan of the inverter. In some embodiments, the switching frequency and/or the output current of the inverter may be changed such that stress may be reduced on the inverter bond wires of the inverter. More specifically, embodiments involve calculating the aging parameters for certain operating conditions of the inverter and determining whether the operating conditions result in aging the inverter to a point which reduces the inverter lifespan below a desired lifespan. If the operating conditions reduce the inverter lifespan below the desired lifespan, the switching frequency may be reduced to a lower or minimum switching frequency of the inverter and/or the output current of the inverter may be reduced to a maximum output current at the minimum switching frequency.
Abstract:
The present techniques include methods and systems for operating an inverter to maintain a lifespan of the inverter. In some embodiments, the switching frequency and/or the output current of the inverter may be changed such that stress may be reduced on the inverter bond wires of the inverter. More specifically, embodiments involve calculating the aging parameters for certain operating conditions of the inverter and determining whether the operating conditions result in aging the inverter to a point which reduces the inverter lifespan below a desired lifespan. If the operating conditions reduce the inverter lifespan below the desired lifespan, the switching frequency may be reduced to a lower or minimum switching frequency of the inverter and/or the output current of the inverter may be reduced to a maximum output current at the minimum switching frequency.
Abstract:
Methods and systems for tracking an electronic signal corresponding to an operating frequency of an electronic component are provided. A method may include sampling the signal to determine previous and current time samples of the signal. A frequency of interest in the signal may also be pre-warped to decrease adverse warping effects resulting from processing signals having relatively higher operating frequencies. The previous and current time samples of the signals, along with the pre-warped frequency of interest, may be input into a digital tracking filter. The digital tracking filter may be configured to execute one or more algorithms on the previous and current time samples and the pre-warped frequency of interest to estimate a current operating frequency.
Abstract:
A double fed induction generator (DFIG) converter, methods and computer readable mediums are presented in which rotor side current spikes are attenuated by selectively activating at least one series damping circuit to conduct current through a series damping circuit resistance coupled in series between one or more DFIG rotor leads and a grid side converter in response to a grid fault occurrence or a grid fault clearance, and selectively bypassing the series damping circuit resistance after activating the series damping circuit.
Abstract:
The present techniques include methods and systems for operating converter to maintain a lifespan of the converter. In some embodiments, the operating frequency of the converter may be increased such that stress may be reduced on the bond wires of the converter. More specifically, embodiments involve calculating the aging parameters for certain operating conditions of the converter operating in a maximum power point tracking (MPPT) mode and determining whether the MPPT operation results in aging the converter to a point which reduces the converter lifespan below a desired lifespan. If the MPPT operation reduces the converter lifespan below the desired lifespan, the frequency of the converter may be increased such that the converter may be controlled to operate at a percentage of MPPT. Thus, in some embodiments, power output may be optimized with respect to maintaining a desired lifespan of the converter.
Abstract:
Methods and systems for tracking an electronic signal corresponding to an operating frequency of an electronic component are provided. A method may include sampling the signal to determine previous and current time samples of the signal. A frequency of interest in the signal may also be pre-warped to decrease adverse warping effects resulting from processing signals having relatively higher operating frequencies. The previous and current time samples of the signals, along with the pre-warped frequency of interest, may be input into a digital tracking filter. The digital tracking filter may be configured to execute one or more algorithms on the previous and current time samples and the pre-warped frequency of interest to estimate a current operating frequency.
Abstract:
For calculating load resistance, a pulse generation module drives a pulse width modulation (PWM) inverter in response to a control voltage. The PWM inverter includes a U phase pole, a V phase pole, and a W phase pole. Each U, V, and W phase pole includes an upper pole device and a lower pole device. The PWM inverter turns off the U phase pole, turns on the W upper pole device, turns off the W lower pole device, and applies the control voltage to the V upper pole device and the V lower pole device. A forward drop correction module corrects the control voltage based on a feedforward compensation voltage determined from a forward voltage drop. A load resistance module calculates a load resistance for a load based on an average control voltage, an average bus voltage, and an average load feedback current.