Abstract:
The invention provides a data-path cell specifically adapted to its environment for use in an integrated circuit produced on a semiconductor-on-insulator (SeOI) substrate. The data-path cell includes an array of field-effect transistors, each transistor having a source region, a drain region and a channel region formed in the thin semiconductor layer of the SeOI substrate, and further having a front gate control region formed above the channel region. In particular, one or more transistors of the data-path cell further includes a back gate control region formed in the bulk substrate beneath the channel region and configured so as to modify the performance characteristics of the transistor in dependence on its state of bias. Also, an integrated circuit including one or more of the data-path cells and methods for designing or driving these data-path cells.
Abstract:
The invention relates to a semiconductor device produced on a semiconductor-on-insulator substrate that includes a thin layer of semiconductor material separated from a base substrate by a buried insulating layer, the device including a first conducting region in the thin layer, a second conducting region in the base substrate and a contact connecting the first region to the second region through the insulating layer. The invention also relates to a process for fabricating such semiconductor devices.
Abstract:
A thermally-assisted MRAM structure which is programmable at a writing mode operating temperature is presented and includes an anti-ferromagnet, an artificial anti-ferromagnet, a barrier layer, and a free magnetic layer. The anti-ferromagnet is composed of a material having a blocking temperature Tb which is lower than the writing mode operating temperature of the magnetic random access memory structure. The artificial anti-ferromagnet is magnetically coupled to the anti-ferromagnet, and includes first and second magnetic layers, and a coupling layer interposed therebetween, the first and second magnetic layers having different Curie point temperatures. The barrier layer is positioned to be between the second magnetic layer and the free magnetic layer.
Abstract:
There are many inventions described and illustrated herein. In a first aspect, the present invention is directed to a memory device and technique of reading data from and writing data into memory cells of the memory device. In this regard, in one embodiment of this aspect of the invention, the memory device and technique for operating that device that minimizes, reduces and/or eliminates the debilitating affects of the charge pumping phenomenon. This embodiment of the present invention employs control signals that minimize, reduce and/or eliminate transitions of the amplitudes and/or polarities. In another embodiment, the present invention is a semiconductor memory device including a memory array comprising a plurality of semiconductor dynamic random access memory cells arranged in a matrix of rows and columns. Each semiconductor dynamic random access memory cell includes a transistor having a source region, a drain region, a electrically floating body region disposed between and adjacent to the source region and the drain region, and a gate spaced apart from, and capacitively coupled to, the body region. Each transistor includes a first state representative of a first charge in the body region, and a second data state representative of a second charge in the body region. Further, each row of semiconductor dynamic random access memory cells includes an associated source line which is connected to only the semiconductor dynamic random access memory cells of the associated row.
Abstract:
A resistive memory cell random access memory device and method for fabrication. In one embodiment, the invention relates to a resistive memory cell random access memory device comprising a plurality of first current lines; a plurality of second current lines; a plurality of third current lines being formed as split current lines; and an array of resistive memory cells arranged in columns defined by said first current lines and rows defined by said third current lines, each resistive memory cell including a resistive memory element and an access transistor connected in series, each memory cell being connected between one of said first current lines and a reference potential, wherein said access transistors being FinFET-type field effect transistors, each one having two independent gates and a common floating body, and wherein each third current line being connected to one of said two independent gates of each one of the access transistors of a row of said array and being connected to one of said two independent gates of each one of the access transistors of an adjacent row of said array. It also relates to a method for its fabrication.
Abstract:
There are many inventions described and illustrated herein. In a first aspect, the present invention is directed to a memory device and technique of reading data from and writing data into memory cells of the memory device. In this regard, in one embodiment of this aspect of the invention, the memory device and technique for operating that device that minimizes, reduces and/or eliminates the debilitating affects of the charge pumping phenomenon. This embodiment of the present invention employs control signals that minimize, reduce and/or eliminate transitions of the amplitudes and/or polarities. In another embodiment, the present invention is a semiconductor memory device including a memory array comprising a plurality of semiconductor dynamic random access memory cells arranged in a matrix of rows and columns. Each semiconductor dynamic random access memory cell includes a transistor having a source region, a drain region, a electrically floating body region disposed between and adjacent to the source region and the drain region, and a gate spaced apart from, and capacitively coupled to, the body region. Each transistor includes a first state representative of a first charge in the body region, and a second data state representative of a second charge in the body region. Further, each row of semiconductor dynamic random access memory cells includes an associated source line which is connected to only the semiconductor dynamic random access memory cells of the associated row.
Abstract:
A DRAM including an array of storage elements arranged in lines and columns, and for each column: write means adapted to biasing at least a selected one of the elements to a charge level chosen from among a first predetermined high level and a second predetermined low level, combined with read circuitry adapted to determining whether the stored charge level is greater or smaller than a predetermined charge level; and isolation circuitry adapted to isolating the array from the read and/or write means, each column further including refreshment means, distinct from the read and write circuit, for increasing, beyond the first and second predetermined levels, the charge stored in a storage element.
Abstract:
Disclosed are protection circuitry, and methods of operating the same, for use with clock circuits associated with integrated circuits (ICs). According to one exemplary embodiment, the protection circuitry is operable to generate at least two intermediate clock signals as a function of a received clock signal, and process the at least two intermediate clock signals to (i) cause an output of the protection circuitry to enter a high-impedance state when the at least two intermediate clock signals are different, and (ii) generate a resultant clock signal at the output of the protection circuitry equal to the received clock signal when the at least two intermediate clock signals are identical.
Abstract:
A low consumption oscillator having an inverter connected to a high supply potential and to a low supply potential via two respective resistors, with the resistors formed of capacitors having strong leakages.
Abstract:
The invention provides integrated circuit memories with repair circuits. These repair circuits allow redundant memory cell lines to be substituted for defective cell lines. The invention takes advantage of the existence of these substitution circuits for electrically, and no longer only functionally, decoupling the defective lines. A connection connects circuits for biasing the cell lines to the repair circuit of this line. When the line is repaired (i.e. neutralized) it is automatically unbiased.