Abstract:
A hydrocarbonaceous feed, such as petroleum vacuum distillation bottoms, is upgraded by a combination coking and catalytic slurry hydroconversion process wherein a bottoms fraction from coking is passed to a slurry hydroconversion zone, and the bottoms fraction from the slurry hydroconversion zone is also passed thorugh a microfiltration system to remove catalyst particles.
Abstract:
A carbonaceous feed, such as a heavy hydrocarbonaceous oil or coal and mixtures thereof, is upgraded by a combination coking and catalytic slurry hydroconversion process which may be integrated with a deasphalting process.
Abstract:
Hydroconversion processes utilizing a catalyst prepared from a catalyst precursor concentrate such as phosphomolybdic acid, is provided. The catalyst precursor concentrate is treated at relatively low pressures in a specified manner.
Abstract:
Hydroconversion processes for converting oil, coal or mixtures thereof are provided utilizing a catalyst prepared by first forming an aqueous solution of phosphomolybdic acid and phosphoric acid at a specified ratio of atoms of P/Mo, and subsequently adding this solution to a hydrocarbon material, followed by heating in the presence of H.sub.2 and/or H.sub.2 S to form a solid molybdenum and phosphorus-containing catalyst.
Abstract:
In a process for catalytically converting coal in a diluent wherein the catalyst is prepared in situ in the coal-diluent mixture by converting a metal compound to a metal-containing catalyst, the metal compound is added to the coal-diluent mixture in a liquid medium comprising at least 30 weight percent of a phenol.
Abstract:
A hydrocracking process is provided utilizing high surface area metal-containing catalysts prepared by dispersing a thermally decomposable metal compound in a hydrocarbon oil having a Conradson carbon content of up to about 50 weight percent, the thermally decomposable metal compound being added in an amount sufficient to obtain a specified ratio of atoms of Conradson carbon of the oil chargestock to atoms of metal constituent of the thermally decomposable compound, heating the compound in the presence of a gas comprising either hydrogen or hydrogen sulfide or hydrogen and hydrogen sulfide to form a solid high surface area catalyst. The metal constituent of the thermally decomposable metal compound may be a metal of Groups II, III, IV, V, VIB, VIIB, VIII or mixtures thereof.
Abstract:
A catalytic hydroconversion process for a hydrocarbonaceous oil is effected by dissolving an oil-soluble metal compound in the oil, converting the compound to a solid, non-colloidal catalyst within the oil and reacting the oil containing the catalyst with hydrogen. Preferred compounds are molybdenum compounds.
Abstract:
A combination slurry hydroconversion, coking and coke gasification process is provided wherein carbonaceous solids having an average particle size of less than 10 microns in diameter or the ashes thereof are used as a catalyst in the hydroconversion stage.
Abstract:
Processes for the treating of sulfur-containing petroleum oil feedstocks employing alkali metal compounds, alkaline earth metal compounds, and mixtures thereof are disclosed. Specifically, processes for hydrotreating feedstocks which have been previously partially desulfurized using conventional hydrodesulfurization catalysts by contacting such feedstocks with alkali metal compounds, alkaline earth metal compounds, and mixtures thereof, are disclosed. Preferably, the products of such a treatment are employed as feeds for catalytic cracking processes. In addition, processes for the combined hydrotreating and hydroconversion of various sulfur-containing petroleum oil feeds are disclosed, employing at least two hydroconversion agents selected from the group consisting of the alkali metal compounds and alkaline earth metal compounds, in the presence of added hydrogen, and at elevated temperatures. The reaction products formed thereby include a substantially desulfurized and demetallized, as well as a significantly upgraded petroleum product. The latter is demonstrated by a reduced Conradson carbon content and an increased API gravity.
Abstract:
A coal liquefaction chargestock is first treated with a hydrogen sulfide-containing gas and thereafter subjected to coal liquefaction conditions.