Abstract:
A process for converting high boiling hydrocarbon feedstock into lighter boiling hydrocarbon products in which the lighter boiling hydrocarbon products are suitable feedstock for petrochemical process.
Abstract:
A process for activating and maintaining a catalyst for use in hydrocracking a hydrocarbon stream includes continuously contacting a hydrocarbon stream with a hydroprocessing catalyst in the presence of hydrogen. Sulphides and chloride compounds in the hydrocarbon stream are used such that the hydroprocessing catalyst has the ability to hydrogenate, dechlorinate, and hydrocrack components of the hydrocarbon stream.
Abstract:
Modular systems and methods for removal of contaminants from a mixed plastic waste pyrolysis oil and optionally processing it in a hydrogenation unit to produce a decontaminated hydrogenated pyrolysis oil. These contaminants include metal compounds and non-metal compounds, such as silica compounds, halogenated compounds, phosphorous compounds, oxygenates, and nitrogenates.
Abstract:
Systems and methods for processing a mixed plastic waste feed to produce a hydrogen-rich hydrocarbon product, such as synthetic crude oil or pyrolysis oil, by processing the mixed plastic waste feed through two cracking units. The first cracking unit is operated at a temperature and a residence time sufficient to at least partially depolymerize the plastic polymers in the mixed plastic waste feed to produce a molten oligomers product stream also containing inorganic components from the mixed plastic waste feed and a gas stream. This molten oligomers product stream is further processed in a thermal or a catalytic cracking unit to produce a hydrocarbonaceous stream that is processed to produce the hydrogen-rich hydrocarbon product, such as a synthetic crude oil that can be processed in a refinery or a pyrolysis oil that can be fed to a steam cracker.
Abstract:
Systems and methods for processing hydrocarbons are disclosed. A crude oil, a crude oil fraction, and/or plastic pyrolysis oil is processed in a low pressure hydroprocessing unit to produce a cracker feed stream. The cracker feed stream is then flowed into a fluid catalytic cracking unit or a stream cracking unit to produce high value chemicals.
Abstract:
A process for producing benzene and xylenes comprising introducing hydrocarbon liquid stream to hydroprocessor to yield first gas stream and hydrocarbon product (C5+); optionally introducing hydrocarbon product to first aromatics separating unit to produce saturated hydrocarbons (C5+) and first aromatics stream (C6+); feeding hydrocarbon product and/or saturated hydrocarbons to reformer to produce reformer product, second gas stream, and hydrogen stream; introducing reformer product to second aromatics separating unit to produce a non-aromatics recycle stream and second aromatics stream comprising C6+ aromatics; recycling non-aromatics recycle stream to reformer; introducing first aromatics stream and/or second aromatics stream to third aromatics separating unit to produce first C6 aromatics (benzene), C7 aromatics (toluene), C8 aromatics (xylenesðylbenzene), C9
Abstract:
A process for producing propylene and cumene comprising converting plastics to hydrocarbon liquid and pyrolysis gas in pyrolyzer; feeding hydrocarbon liquid to hydroprocessor to yield hydrocarbon product and first gas stream; introducing hydrocarbon product to second separator to produce first C6 aromatics and refined product; feeding refined product to steam cracker to produce steam cracker product; introducing steam cracker product to third separator to produce second C6 aromatics, third propylene stream, second C2&C4 unsaturated stream, C1-4 saturated gas, and balance hydrocarbons product; introducing pyrolysis gas and/or first gas stream to first separator to produce first propylene stream, first C2&C4 unsaturated stream, and saturated gas stream; feeding first and/or second C2&C4 unsaturated stream to metathesis reactor to produce second propylene stream; feeding first and/or second C6 aromatics, and first, second, and/or third propylene stream to alkylation unit to produce cumene; and conveying balance hydrocarbons product to pyrolyzer and/or hydroprocessor.
Abstract:
A process for dechlorination of a hydrocarbon stream and/or a hydrocarbon stream precursor comprising introducing the hydrocarbon stream and/or hydrocarbon stream precursor, a first zeolitic catalyst, and a stripping gas to a devolatilization extruder (DE) to produce an extruder effluent, wherein the hydrocarbon stream and/or hydrocarbon stream precursor comprises one or more chloride compounds in an amount of equal to or greater than about 10 ppm chloride, based on the total weight of the hydrocarbon stream and/or hydrocarbon stream precursor, and wherein the extruder effluent comprises one or more chloride compounds in an amount of less than the chloride amount in the hydrocarbon stream and/or hydrocarbon stream precursor.
Abstract:
A process for processing plastic waste comprising converting plastic waste to hydrocarbon liquid and a first C1-4 gas; contacting hydrocarbon liquid with a first hydroprocessing catalyst in hydroprocessing unit to yield a second C1-4 gas and a first hydrocarbon product comprising C5+ liquid hydrocarbons; introducing the first hydrocarbon product to a first separating unit to produce treated hydrocarbon stream comprising C5-8 hydrocarbons and a first heavies stream comprising C9+ hydrocarbons; contacting the first heavies stream with a second hydroprocessing catalyst in hydrodealkylating unit to yield a second hydrocarbon product comprising C5+ liquid hydrocarbons and a third C1-4 gas; conveying the second hydrocarbon product to the first separating unit; feeding treated hydrocarbon stream to steam cracker to produce steam cracker product; separating steam cracker product into olefin gas, saturated hydrocarbons gas, aromatics, and a second heavies stream; and conveying the second heavies stream to hydroprocessing unit.
Abstract:
A process for converting hydrocarbons originating from refinery operations such as atmospheric distillation unit or a fluid catalytic cracking unit (FCC), into lighter boiling hydrocracked hydrocarbons having a boiling point lower than naphthalene and lower.