Abstract:
A choke for fluid connection between a manifold and a pump. The choke includes a fluid passage having an inlet, a contraction portion, a throat, an expansion portion, and an outlet. The inlet has a first diameter and the outlet has a second diameter. The throat is substantially cylindrical, having a third diameter that is substantially less than the first and second diameters. The contraction portion connects the inlet and the throat and gradually decreases from the first diameter to the third diameter along a longitudinal axis of the fluid passage. The expansion portion connects the throat and the outlet and includes a substantially cylindrical chamber having the second diameter.
Abstract:
A conduit forming part of a drilling fluid return path from a wellbore has at least one flow restrictor disposed on an interior surface of the conduit. A drill string is disposed through the interior of the conduit and has at least one flow restrictor disposed on an exterior surface of the drill string. The drill string is longitudinally movable through the conduit to enable placing the flow restrictor in the conduit, and the flow restrictor on the drill string at a selected longitudinal distance from each other.
Abstract:
Methods and apparatus for obtaining data from a density-viscosity (DV) sensor of a downhole tool, wherein the DV sensor comprises a resonating element disposed in a fluid flowing in a flowline of the downhole tool, and determining a resonance frequency and quality factor of the resonating element utilizing a nonlinear regression and/or a plurality of resonance modes exhibited by the obtained data.
Abstract:
A mixer sensing assembly of a mixer for mixing a wellsite fluid in a tank at a wellsite is provided. The mixer includes a shaft driven by a driver and a paddle operatively connectable to the shaft and rotatable therewith. The sensor assembly includes a mount operatively connectable to the shaft, a fluid interface, and a mixing sensor. The fluid interface is responsive to flow of the wellsite fluid passing thereby, and is connectable to the mount. The mixing sensor is connectable to the mount, the fluid interface, and/or the shaft to measure a strain applied to the thereto whereby fluid parameters of the wellsite fluid may be determined. The wellsite fluid may be mixed moving the components in the tank with the mixer, and measuring a strain on the mixer by detecting movement of the sensor assembly.
Abstract:
Methods and apparatus for obtaining data from a density-viscosity (DV) sensor of a downhole tool, wherein the DV sensor comprises a resonating element disposed in a fluid flowing in a flowline of the downhole tool, and determining a resonance frequency and quality factor of the resonating element utilizing a nonlinear regression and/or a plurality of resonance modes exhibited by the obtained data.
Abstract:
A mixer sensing assembly of a mixer for mixing a wellsite fluid in a tank at a wellsite is provided. The mixer includes a shaft driven by a driver and a paddle operatively connectable to the shaft and rotatable therewith. The sensor assembly includes a mount operatively connectable to the shaft, a fluid interface, and a mixing sensor. The fluid interface is responsive to flow of the wellsite fluid passing thereby, and is connectable to the mount. The mixing sensor is connectable to the mount, the fluid interface, and/or the shaft to measure a strain applied to the thereto whereby fluid parameters of the wellsite fluid may be determined. The wellsite fluid may be mixed moving the components in the tank with the mixer, and measuring a strain on the mixer by detecting movement of the sensor assembly.
Abstract:
A mixer and method for mixing are provided. The mixer includes a housing having a fluid inlet, an additive inlet, and an outlet, with the housing defining a mixing chamber in fluid communication with the fluid inlet, the additive inlet, and the outlet. The mixer also includes an impeller disposed in the mixing chamber, wherein, when rotated, the impeller draws fluid through the fluid inlet. The mixer also includes a slinger disposed in the mixing chamber and configured to receive the fluid from the impeller and to receive an additive from the additive inlet. When rotated, the slinger slings the fluid and the additive radially outwards. The mixer further includes a stator disposed at least partially around the slinger, with the stator including vanes spaced circumferentially apart so as to define flowpaths therebetween.