Abstract:
The present invention discloses an array substrate and liquid crystal display panel, wherein in the array substrate, each pixel unit includes a first pixel electrode, a second pixel electrode and a third pixel electrode; and each pixel unit includes a first control circuit and a second control circuit; the first control circuit affects first pixel electrode to make first pixel electrode in a state corresponding to displaying a black image in 3D display mode; the second control circuit affects second pixel electrode to change the voltage of second pixel electrode. As such, the present invention can reduce color difference at large viewing angle, improve opening ratio in 2D mode, reduce signal cross-talk in 3D mode, and reduce the number of data line drivers to reduce the cost.
Abstract:
A doping method for an array substrate and a manufacturing equipment. The doping method comprises: using a halftone mask to form a photoresist pattern layer on a gate insulation layer of a substrate; wherein, a polysilicon pattern layer is disposed on the substrate; the gate insulation layer covers the polysilicon pattern layer; the photoresist pattern layer corresponding to a heavily doping region forms a hollow portion; the photoresist pattern layer corresponding to a lightly doping region forms a first photoresist portion; the photoresist pattern layer corresponding to an undoped region forms a second photoresist portion; the first photoresist portion is thinner than the second photoresist portion; and performing one doping process to the polysilicon pattern layer such that the heavily doping region and the lightly doping region of the polysilicon pattern layer are formed simultaneously in order to reduce the manufacturing process of an LTPS array substrate.
Abstract:
The present invention provides a liquid crystal panel, which includes: a thin-film transistor (TFT) substrate, a color filter (CF) substrate opposite to the TFT substrate, and a liquid crystal layer arranged between the TFT substrate and the CF substrate. The TFT substrate includes a first glass substrate and a pixel electrode. The CF substrate includes a second glass substrate and a common electrode. The pixel electrode includes a plurality of pixels, each of which includes a plurality of sub-pixels. Each sub-pixel includes: a first zone and a second zone adjacent to the first zone. The first zone has a liquid crystal cell thickness that is greater than or smaller than a liquid crystal cell thickness of the second zone. The same driving voltage applied to the first and second zones of would result in different electric fields due to the different liquid crystal cell thicknesses.
Abstract:
The present disclosure relates to a display panel, a pixel structure therein, and a driving method thereof The pixel structure includes a plurality of sub pixels, each of them including: a first display area, configured to receive a scan signal of a first scan line and then receive a data signal of a first data line so as to have a first potential; a second display area, configured to receive the scan signal of the first scan line, and then receive a data signal of a second data line adjacent to the first data line so as to have a second potential different from the first potential; and a third display area, configured to receive a scan signal of a second scan line adjacent to the first scan line, and then receive the second potential from the second display area so as to have a third potential. With the above pixel structure, compatible display for 2D and 3D display modes can be realized when the penetration rate of the 2D display mode is ensured. Moreover, a low color shift effect can be achieved in both 2D and 3D display modes, thus improving the display effect.
Abstract:
The present invention provides a liquid crystal panel, which includes: a thin-film transistor (TFT) substrate, a color filter (CF) substrate opposite to the TFT substrate, and a liquid crystal layer arranged between the TFT substrate and the CF substrate. The TFT substrate includes a first glass substrate and a pixel electrode. The CF substrate includes a second glass substrate and a common electrode. The pixel electrode includes a plurality of pixels, each of which includes a plurality of sub-pixels. Each sub-pixel includes: a first zone and a second zone adjacent to the first zone. The first zone has a liquid crystal cell thickness that is greater than or smaller than a liquid crystal cell thickness of the second zone. The same driving voltage applied to the first and second zones of would result in different electric fields due to the different liquid crystal cell thicknesses.