Abstract:
A semiconductor device has a semiconductor die and encapsulant deposited over the semiconductor die. A first insulating layer is formed over the die and encapsulant. The first insulating layer is cured with multiple dwell cycles to enhance adhesion to the die and encapsulant. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first insulating layer and first conductive layer. The second insulating layer is cured with multiple dwell cycles to enhance adhesion to the first insulating layer and first conductive layer. A second conductive layer is formed over the second insulating layer and first conductive layer. A third insulating layer is formed over the second insulating layer and second conductive layer. The first, second, and third insulating layers have different CTE. The second insulating layer or third insulating layer is cured to a dense state to block moisture.
Abstract:
A semiconductor device has a semiconductor package and an interposer disposed over the semiconductor package. The semiconductor package has a first semiconductor die and a modular interconnect unit disposed in a peripheral region around the first semiconductor die. A second semiconductor die is disposed over the interposer opposite the semiconductor package. An interconnect structure is formed between the interposer and the modular interconnect unit. The interconnect structure is a conductive pillar or stud bump. The modular interconnect unit has a core substrate and a plurality of vertical interconnects formed through the core substrate. A build-up interconnect structure is formed over the first semiconductor die and modular interconnect unit. The vertical interconnects of the modular interconnect unit are exposed by laser direct ablation. An underfill is deposited between the interposer and semiconductor package. A total thickness of the semiconductor package and build-up interconnect structure is less than 0.4 millimeters.
Abstract:
A semiconductor device includes a semiconductor die and an encapsulant formed over a first surface of the semiconductor die and around the semiconductor die. A first insulating layer is formed over a second surface of the semiconductor die opposite the first surface. A plurality of conductive vias is formed through the first insulating layer. A conductive pad is formed over the encapsulant. An interconnect structure is formed over the semiconductor die and encapsulant. A first opening is formed in the encapsulant to expose the conductive vias. The conductive vias form a conductive via array. The conductive via array is inspected through the first opening to measure a dimension of the first opening and determine a position of the first opening. The semiconductor device is adjusted based on a position of the conductive via array. A conductive material is formed in the first opening over the conductive via array.
Abstract:
A semiconductor device includes a semiconductor die. An encapsulant is disposed around the semiconductor die to form a peripheral area. An interconnect structure is formed over a first surface of the semiconductor die and encapsulant. A plurality of vias is formed partially through the peripheral area of the encapsulant and offset from the semiconductor die. A portion of the encapsulant is disposed over a second surface of the semiconductor die opposite the first surface. The plurality of vias comprises a depth greater than a thickness of the portion of the encapsulant. A first portion of the plurality of vias is formed in a row offset from a side of the semiconductor die. A second portion of the plurality of vias is formed as an array of vias offset from a corner of the semiconductor die. A repair material disposed within the plurality of vias.