Abstract:
A semiconductor device has a substrate with first and second conductive layers formed over first and second opposing surfaces of the substrate. A plurality of bumps is formed over the substrate. A semiconductor die is mounted to the substrate between the bumps. An encapsulant is deposited over the substrate and semiconductor die. A portion of the bumps extends out from the encapsulant. A portion of the encapsulant is removed to expose the substrate. An interconnect structure is formed over the encapsulant and semiconductor die and electrically coupled to the bumps. A portion of the substrate can be removed to expose the first or second conductive layer. A portion of the substrate can be removed to expose the bumps. The substrate can be removed and a protection layer formed over the encapsulant and semiconductor die. A semiconductor package is disposed over the substrate and electrically connected to the substrate.
Abstract:
A semiconductor device has a semiconductor package and an interposer disposed over the semiconductor package. The semiconductor package has a first semiconductor die and a modular interconnect unit disposed in a peripheral region around the first semiconductor die. A second semiconductor die is disposed over the interposer opposite the semiconductor package. An interconnect structure is formed between the interposer and the modular interconnect unit. The interconnect structure is a conductive pillar or stud bump. The modular interconnect unit has a core substrate and a plurality of vertical interconnects formed through the core substrate. A build-up interconnect structure is formed over the first semiconductor die and modular interconnect unit. The vertical interconnects of the modular interconnect unit are exposed by laser direct ablation. An underfill is deposited between the interposer and semiconductor package. A total thickness of the semiconductor package and build-up interconnect structure is less than 0.4 millimeters.
Abstract:
A semiconductor device has a first build-up interconnect structure formed over a substrate. The first build-up interconnect structure includes an insulating layer and conductive layer formed over the insulating layer. A vertical interconnect structure and semiconductor die are disposed over the first build-up interconnect structure. The semiconductor die, first build-up interconnect structure, and substrate are disposed over a carrier. An encapsulant is deposited over the semiconductor die, first build-up interconnect structure, and substrate. A second build-up interconnect structure is formed over the encapsulant. The second build-up interconnect structure electrically connects to the first build-up interconnect structure through the vertical interconnect structure. The substrate provides structural support and prevents warpage during formation of the first and second build-up interconnect structures. The substrate is removed after forming the second build-up interconnect structure. A portion of the insulating layer is removed exposing the conductive layer for electrical interconnect with subsequently stacked semiconductor devices.
Abstract:
A semiconductor device has a first conductive layer and a semiconductor die disposed adjacent to the first conductive layer. An encapsulant is deposited over the first conductive layer and semiconductor die. An insulating layer is formed over the encapsulant, semiconductor die, and first conductive layer. A second conductive layer is formed over the insulating layer. A first portion of the first conductive layer is electrically connected to VSS and forms a ground plane. A second portion of the first conductive layer is electrically connected to VDD and forms a power plane. The first conductive layer, insulating layer, and second conductive layer constitute a decoupling capacitor. A microstrip line including a trace of the second conductive layer is formed over the insulating layer and first conductive layer. The first conductive layer is provided on an embedded dummy die, interconnect unit, or modular PCB unit.
Abstract:
A semiconductor device has a first interconnect structure formed over the carrier. A semiconductor die is disposed over the first interconnect structure after testing the first interconnect structure to be known good. The semiconductor die in a known good die. A vertical interconnect structure, such as a bump or stud bump, is formed over the first interconnect structure. A discrete semiconductor device is disposed over the first interconnect structure or the second interconnect structure. An encapsulant is deposited over the semiconductor die, first interconnect structure, and vertical interconnect structure. A portion of the encapsulant is removed to expose the vertical interconnect structure. A second interconnect structure is formed over the encapsulant and electrically connected to the vertical interconnect structure. The first interconnect structure or the second interconnect structure includes an insulating layer with an embedded glass cloth, glass cross, filler, or fiber.
Abstract:
A semiconductor device has a first build-up interconnect structure formed over a substrate. The first build-up interconnect structure includes an insulating layer and conductive layer formed over the insulating layer. A vertical interconnect structure and semiconductor die are disposed over the first build-up interconnect structure. The semiconductor die, first build-up interconnect structure, and substrate are disposed over a carrier. An encapsulant is deposited over the semiconductor die, first build-up interconnect structure, and substrate. A second build-up interconnect structure is formed over the encapsulant. The second build-up interconnect structure electrically connects to the first build-up interconnect structure through the vertical interconnect structure. The substrate provides structural support and prevents warpage during formation of the first and second build-up interconnect structures. The substrate is removed after forming the second build-up interconnect structure. A portion of the insulating layer is removed exposing the conductive layer for electrical interconnect with subsequently stacked semiconductor devices.
Abstract:
A semiconductor device has an encapsulant deposited over a first surface of the semiconductor die and around the semiconductor die. A first insulating layer is formed over a second surface of the semiconductor die opposite the first surface. A conductive layer is formed over the first insulating layer. An interconnect structure is formed through the encapsulant outside a footprint of the semiconductor die and electrically connected to the conductive layer. The first insulating layer includes an optically transparent or translucent material. The semiconductor die includes a sensor configured to receive an external stimulus passing through the first insulating layer. A second insulating layer is formed over the first surface of the semiconductor die. A conductive via is formed through the first insulating layer outside a footprint of the semiconductor die. A plurality of stacked semiconductor devices is electrically connected through the interconnect structure.
Abstract:
A semiconductor device has a substrate. A conductive via is formed through the substrate. A plurality of first contact pads is formed over a first surface of the substrate. A plurality of second contact pads is formed over a second surface of the substrate. A dummy pattern is formed over the second surface of the substrate. An indentation is formed in a sidewall of the substrate. An opening is formed through the substrate. An encapsulant is deposited in the opening. An insulating layer is formed over second surface of the substrate. A dummy opening is formed in the insulating layer. A semiconductor die is disposed adjacent to the substrate. An encapsulant is deposited over the semiconductor die and substrate. The first surface of the substrate includes a width that is greater than a width of the second surface of the substrate.
Abstract:
A semiconductor device includes a semiconductor die and an encapsulant formed over a first surface of the semiconductor die and around the semiconductor die. A first insulating layer is formed over a second surface of the semiconductor die opposite the first surface. A plurality of conductive vias is formed through the first insulating layer. A conductive pad is formed over the encapsulant. An interconnect structure is formed over the semiconductor die and encapsulant. A first opening is formed in the encapsulant to expose the conductive vias. The conductive vias form a conductive via array. The conductive via array is inspected through the first opening to measure a dimension of the first opening and determine a position of the first opening. The semiconductor device is adjusted based on a position of the conductive via array. A conductive material is formed in the first opening over the conductive via array.
Abstract:
A plurality of semiconductor die is mounted to a temporary carrier. An encapsulant is deposited over the semiconductor die and carrier. A portion of the encapsulant is designated as a saw street between the die, and a portion of the encapsulant is designated as a substrate edge around a perimeter of the encapsulant. The carrier is removed. A first insulating layer is formed over the die, saw street, and substrate edge. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first conductive layer and first insulating layer. The encapsulant is singulated through the first insulating layer and saw street to separate the semiconductor die. A channel or net pattern can be formed in the first insulating layer on opposing sides of the saw street, or the first insulating layer covers the entire saw street and molding area around the semiconductor die.