Abstract:
The addition of high throughput capability elements to beacon frames and peer link action frames in wireless mesh networks enable the utilization of desirable features without further modifications to the network. Rules can be established for high throughput mesh point protection in a mesh network, Space-time Block Code (STBC) operations and 20/40 MHz operation selections. However, features such as PSMP (power save multi-poll) and PCO (phased coexistence operations) are barred from implementation to prevent collisions.
Abstract:
Methods and apparatus for implementing a robust unicast/broadcast/multicast protocol are provided. In one aspect, a method of avoiding collision of intra-basic service set unicast, broadcast or multicast transmissions notifies stations in the basic service set of a reserved transmit opportunity for a unicast, broadcast or multicast transmission. Transmissions from at least one station in the basic service set are deferred until after the reserved unicast, broadcast or multicast transmit opportunity.
Abstract:
A compressed header format is used for messages transmitted in a wireless network. The compressed header includes a first address field and a frame control field including at least one bit specifying whether the first address is for an access point of the wireless communications network. The frame control field may further include at least one additional bit identifying whether the frame is being relayed by a relay node positioned between the access point and a wireless station. The frame control field may further include at least one further bit identifying whether AID is used for the first address field.
Abstract:
An additional cyclic redundancy check (CRC) is inserted in IEEE 802.11 beacon or data frames prior to the end of the frame, at a location following information sufficient for the receiving station to determine whether the frame is from an overlapping basic service set or intended for a different station and to extract other necessary or useful information such as a time of the next full beacon. Upon detecting the CRC, the receiving STA can terminate reception of the frame early to conserve power, and then enter a low power operational mode to further conserve power.
Abstract:
A IEEE 802.11 Wireless Local Area Network (WLAN) system of an access point (AP) and one or more stations (STAB) reduces power consumption and increases battery life of power efficient low power STAB by decreasing the amount of time that a power efficient low power STA remains in an awake state. After indicating power efficient low power operation during association with an AP supporting such operation, the power efficient low power STA may enter the doze state from the time that the power efficient low power STA sends a PS-Poll until the power efficient low power STA receives the buffered DATA frame from the AP. While implementing the power efficient PS-Poll method, the AP can send the buffered DATA frame to the STA SIFS after the AP sends an ACK to the received PS-Poll from the STA.
Abstract:
An access point (AP) contends for a medium during a contention period in order to obtain exclusive control of the medium for a certain time period that may include one or more transmission opportunities. The AP and client stations (STAs) communicate during the time period using orthogonal frequency division multiple access (OFDMA) techniques with scheduled use (i.e., allocation) of sub-channels of the medium. The AP controls this scheduling for down-link and up-link communications by sending control signaling to inform the STAs of the resource allocation schedule which specifies STAs involved in the OFDMA communications along with the sub-channel identification bandwidth allocated to each STA. The control signaling may be a combination of physical layer (PHY) and medium access control layer (MAC) communicated information.
Abstract:
A IEEE 802.11 Wireless Local Area Network (WLAN) system of an access point (AP) and one or more stations (STAs) reduces power consumption and increases battery life of power efficient low power STAs by decreasing the amount of time that a power efficient low power STA remains in an awake state. After indicating power efficient low power operation during association with an AP supporting such operation, the power efficient low power STA may enter the doze state from the time that the power efficient low power STA sends a PS-Poll until the power efficient low power STA receives the buffered DATA frame from the AP. While implementing the power efficient PS-Poll method, the AP can send the buffered DATA frame to the STA SIFS after the AP sends an ACK to the received PS-Poll from the STA.
Abstract:
Multiple virtual MAC addresses may be added to WGA devices that may have different traffic streams to another device that requires different services, thus creating distinct MAC and device level implications. Beamforming training can be done at the device level for all virtual MAC addresses. Wakeup, doze, and ATIM power save can be done at the device level depending on the frames received. Authentication, deauthentication, association, and deassociation can be done variously at both levels. Further MSDUs can be aggregated for the multiple MAC addresses.
Abstract:
A wireless network access point generates a fast initial link setup (FILS) discovery frame for broadcast to one or more wireless stations. The wireless network access point supports many operating channels including a primary channel. The FILS discovery frame includes a data field populated with an identification of a channel number for that primary channel of the wireless network access point. The FILS discovery frame includes another data field populated with a primary channel operating class identification. The broadcast FILS discovery frame further includes data indicating whether indicating whether multiple BSSIDs are supported. An FD capability field of the FILS discovery frame includes sub-fields indicating one or more of operation channel width, PHY type of the wireless access point, number of spatial streams supported by the wireless access point and multiple BSSIDs support provided by the wireless access point.
Abstract:
Methods and apparatus for implementing a robust unicast/broadcast/multicast protocol are provided. In one aspect, a method of avoiding collision of intra-basic service set unicast, broadcast or multicast transmissions notifies stations in the basic service set of a reserved transmit opportunity for a unicast, broadcast or multicast transmission. Transmissions from at least one station in the basic service set are deferred until after the reserved unicast, broadcast or multicast transmit opportunity.