Abstract:
An image compensating device includes a transmission ratio calculator configured to output a red transmission ratio of a user's crystalline lens, a green transmission ratio of the crystalline lens, and a blue transmission ratio of the crystalline lens based on the user's age, and a compensator configured to receive red input data, green input data, and blue input data and compensate the red input data, the green input data, and the blue input data based on the red transmission ratio, the green transmission ratio, and the blue transmission ratio.
Abstract:
A display apparatus includes a display panel, a light source part, a panel driver, and a light source driver. The display panel includes a first sub pixel having a first primary color, a second sub pixel having a second primary color, and a transparent sub-pixel. The light source part is configured to provide light to the display panel, where the light source part includes a first light source and a second light source having colors different from each other. The panel driver is configured to output to the display panel a first grayscale data, a second grayscale data, and a third grayscale data, respectively during a first sub frame, a second sub frame, and a third sub frame. The first grayscale data is associated with the first light source, and the second grayscale data and the third grayscale data are associated with the second light source.
Abstract:
A quantum dot light-emitting device and a display apparatus including the same, the device including a light-emitting device that emits a first light; a quantum dot layer facing the light-emitting device, the quantum dot layer including a plurality of quantum dots, absorbing the first light, and emitting a second light and a third light that have different wavelength ranges compared to the first light; and a band pass filter on the quantum dot layer, the band pass filter cutting off a portion of the second light and a portion of the third light.
Abstract:
A backlight assembly having a light emitting module and a lower receiving container, the light emitting module including a first light source configured to generate a first light and a quantum dot rail configured to generate a second light from the first light the light emitting module is disposed under a display panel to provide the display panel with the second light, and the lower receiving container is configured to receive the light emitting module and the display panel6b
Abstract:
A backlight assembly includes a first light source part including a plurality of first light sources configured to generate light having a first color and a plurality of second light sources configured to generate light having a second color different from the first color, and a light guiding plate including a first incident surface and an exiting surface adjacent to the first incident surface. The exiting surface is configured to allow the light to pass therethrough. The exiting surface includes a first peripheral portion configured to absorb the light having the second color and a central portion adjacent to the first peripheral portion and configured to allow the light to pass therethrough. The first and second light sources are alternately located.
Abstract:
A display device includes a display panel having a first transparent subpixel, a second transparent subpixel and a third transparent subpixel. A light source part provides light to the display panel. The light source part including a first light source configured to generate red light, a second light source configured to generate green light and a third light source configured to generate blue light. The third light source includes a blue light emitting diode and a wavelength shift layer. The wavelength of the blue light emitted from the third light source has a first peak within a range of about 445 nm to about 450 nm and a second peak within a range of about 450 nm to about 540 nm.
Abstract:
A display apparatus includes a display panel and a light source part. The display panel includes a first subpixel having a first color, a second subpixel having a second color and a transparent subpixel. The light source part provides a light to the display panel. The light source part includes a first light source generating a first light having a mixed color of the first primary color and the second primary color and a second light source generating a second light having a third primary color. At least one of the first and second light sources are repeatedly turned on and off.