Abstract:
Among data voltages applied to a plurality of pixels on a display panel, a first data voltage is shifted from a first original data voltage by a first value, a second data voltage is shifted from a second original data voltage by a second value, and a third data voltage is shifted from a third original data voltage by a third value to compensate for AC and DC afterimages. A common voltage generator provides an optimal common voltage for the third data voltage when the temperature of the liquid crystal panel assembly is lower than a reference temperature and provides an optimal common voltage for the first data voltage or the second data voltage when the temperature of the liquid crystal panel assembly is higher than or equal to the reference temperature. The first, second, and third values correspond to respective kickback voltages of the respective gray level data voltages.
Abstract:
According to an embodiment of the disclosure, a display device includes a first electrode and a second electrode that are disposed on a substrate and spaced apart from each other, a light emitting element disposed between the first electrode and the second electrode, and an auxiliary electrode disposed on the substrate and overlapping the light emitting element such that the auxiliary electrode forms an electric field in an area where the light emitting element is disposed.
Abstract:
A display panel includes a base layer, a circuit layer, a light emitting element, a pixel defining film, an encapsulation layer, and a first dam. The base layer may include a display area and a non-display area adjacent to the display area. The encapsulation layer may include a first inorganic film, an organic film, and a second inorganic film. The first dam may be disposed between the first inorganic film and the second inorganic film, and outside the organic film. The first dam may overlap the non-display area and the pixel defining film on a plane. Therefore, in the display panel of an embodiment, the non-display area may be reduced.
Abstract:
A display device includes a bank including an opening exposing a surface of a base. The bank further includes side surfaces adjacent to an upper surface. The side surfaces slope downward from the upper surface toward an opening in an organic film pattern. A plurality of fine holes are formed on the upper surface and the side surfaces, the bank may also include a plurality of inner holes.
Abstract:
An alignment layer composition including a copolymer of a dianhydride compound and a diamine compound, the copolymer including a repeating unit represented by chemical formula (1); and a repeating unit represented by chemical formula (2): wherein R1 is a tetravalent organic group derived from an alicyclic dianhydride or an aromatic dianhydride, and wherein R1 includes a phenyl ester group.
Abstract:
A photoalignment agent is provided. The photoalignment agent includes a copolymer of ii) at least one of a cyclobutanedianhydride (CBDA) and a cyclobutanedianhydride (CBDA) derivative, and ii) a diamine, and the diamine includes an electron donor group.
Abstract:
A liquid crystal display includes a first substrate, a thin film transistor positioned on the first substrate, a first electrode connected to the thin film transistor, a second substrate facing the first substrate, a first alignment layer positioned on the first electrode and a second alignment layer positioned on the second substrate, and a liquid crystal layer positioned between the first substrate and the second substrate and including a liquid crystal molecule. At least one of the first alignment layer and the second alignment layer includes a copolymer of cyclobutanedianhydride (CBDA), a diamine, and a compound represented by Chemical Formula 2. In which X of Chemical Formula 2 represents —(CH2)m-O—(CH2)n—, and a sum of m and n is an odd number.
Abstract:
In a liquid crystal display, a pretilt value provided by an upper alignment layer or a lower alignment layer is gradually changed in one domain, such that liquid crystal molecules have various arrangements in which azimuth angles of aligned liquid crystal molecules are gradually changed.
Abstract:
A method of manufacturing a photo-alignment layer, includes: disposing a polymer material on a substrate; pre-baking the polymer material disposed on the substrate; irradiating a light to the pre-baked polymer material, to photo-align the pre-baked polymer material; and thermal-treating the irradiated pre-baked polymer material, to harden the irradiated pre-baked polymer material. The thermal-treating includes a first thermal-treatment, and a second thermal-treatment at a higher temperature than the first thermal-treatment.
Abstract:
The display device includes electrodes disposed in pixels, the electrodes being spaced apart from each other, light emitting elements disposed between the electrodes, a bank including opening overlapping the light emitting elements, and a color conversion layer disposed in the opening. The bank includes a polymer and a liquid crystal material.