Abstract:
A wireless power receiver is disclosed. A wireless power receiver according to various embodiments of the present disclosure includes a resonant reception unit configured to receive wireless power by a resonance scheme; an inductive reception unit configured to receive wireless power by an induction scheme; and a power processing unit configured to process wireless power received at the resonant reception unit and the inductive reception unit. When the wireless power is received by the induction scheme, a current flowing in the inductive reception unit is greater than a current flowing in the resonant reception unit, and when the wireless power is received by the resonance scheme, a current flowing in the resonant reception unit is greater than a current flowing in the inductive reception unit.
Abstract:
Apparatuses, systems, and methods of wireless power transmission/reception are described. In one wireless power transmission/reception device, a planar resonator capable of generating magnetic fields has one or more ferrite members mounted thereon such that the magnetic fields generated by the planar resonator have an overall direction substantially tilted or parallel to its opening/face, i.e., to the plane of the planar resonator. In a wireless power reception device, the planar resonator generates magnetic fields and an induced current when being resonated by external magnetic fields; in a wireless power transmission device, the planar resonator generates magnetic fields when being supplied with power.
Abstract:
A three-dimensional image display apparatus includes a display panel configured to display an image and including gate lines, data lines, and pixels connected to the gate lines and the data lines, a data driver configured to drive the data lines, a gate driver configured to drive the gate lines, a lens panel configured to refract light of the image displayed by the display panel, a lens driver configured to drive the lens panel, a lens controller configured to control the lens driver, and a timing controller configured to control the data driver, the gate driver, and the lens driver in response to an image signal and a control signal. The lens controller and the timing controller are mounted on the same control board.
Abstract:
A wireless power transmitting device is provided. The wireless power transmitting device includes a patch antenna, and a transmission/reception processing circuit configured to output a first signal to the patch antenna during a first period, and process a second signal output from the patch antenna during a second period, wherein the patch antenna is configured to transmit a transmission wave using the first signal, and output the second signal to the transmission/reception processing circuit using a reception wave.
Abstract:
A wireless power transmission device radiating electromagnetic waves is disclosed. The wireless power transmission device can comprise: a first circuit board; a first conductive member mounted on a first surface of the first circuit board; a first ground member mounted on a second surface facing opposite from the first surface; and an electrical circuit disposed on a position, on the second surface of the first circuit board, which does not overlap the first ground member and for controlling the radiation of electromagnetic waves from the first circuit board.
Abstract:
A wireless power transmitting device is provided. The wireless power transmitting device may comprise an antenna, a memory, and a processor configured to control to store, as reference information, information of a first reflected signal of a pilot signal sent out through the antenna at a first time in the memory and control to compare the reference information with information about second reflected signals of a pilot signal sent out through the antenna at a second time, and determine a position of a target for detection based on a result of the comparison.
Abstract:
An electronic device and a method for transmitting health information by the electronic device are provided. The method includes receiving, from a terminal, a first message requesting the health information; measuring a body condition, in response the first message; and transmitting, to the terminal, a second message including the health information by using human body communication, the health information being based on the measured body condition.
Abstract:
Disclosed are various embodiments relating to a wearable device. According to an embodiment, a wearable device including a wireless charging device may include: a housing of the wearable device; first and second straps connected to the housing; first and second buckles provided on the first and second straps; a reception resonator provided in the housing to receive power transmitted from the outside; and a wireless power reception module provided in the housing and electrically connected to the reception resonator. Various other embodiments can be made.
Abstract:
A wearable device may include: an analog watch unit that includes a time indicating unit that indicates time, and a drive unit that drives the time indicating unit; a touch screen that senses an input for adjusting the drive unit; and a control unit that controls the drive unit in response to the sensed input.
Abstract:
A method for filtering spam in an electronic device is provided. The method includes transmitting a request message inquiring whether a received call or message is spam to a server through a mobile communication network, in response to the received call or message being determined to be spam based on a response message received from the server, displaying an alert message, and storing a sender phone number of the received call or message in a spam phone number list.