Abstract:
A semiconductor device is provided. The semiconductor device includes a substrate including an active pattern, a gate electrode extending in a first direction and crossing the active pattern which extends in a second direction, a separation structure crossing the active pattern and extending in the first direction, a first gate dielectric pattern disposed on a side surface of the gate electrode, a second gate dielectric pattern disposed on a side surface of the separation structure, and a gate capping pattern covering a top surface of the gate electrode. A level of a top surface of the separation structure is higher than a level of a top surface of the gate capping pattern.
Abstract:
An integrated circuit device includes an active area extending in a first direction on a substrate and a gate line extending in a second direction intersecting with the first direction to intersect with the active area. The gate line comprises a first sidewall and a second sidewall opposite to each other. The first sidewall has a convex shape. The second sidewall has a concave shape.
Abstract:
A semiconductor memory device includes a substrate having a first region and a second region. A first gate electrode layer is on the first region and includes a first conductive layer including a first plurality of layers, and includes a first upper conductive layer on the first conductive layer. A second gate electrode layer is on the second region and includes a second conductive layer including a second plurality of layers, and includes a second upper conductive layer on the second conductive layer. At least one of the first plurality of layers includes titanium oxynitride (TiON). A first transistor including the first gate electrode layer and a second transistor including the second gate electrode layer are metal oxide semiconductor field effect transistors (MOSFETs) having the same channel conductivity type, and a threshold voltage of the first transistor is smaller than a threshold voltage of the second transistor.
Abstract:
A semiconductor memory device includes a substrate having a first region and a second region. A first gate electrode layer is on the first region and includes a first conductive layer including a first plurality of layers, and includes a first upper conductive layer on the first conductive layer. A second gate electrode layer is on the second region and includes a second conductive layer including a second plurality of layers, and includes a second upper conductive layer on the second conductive layer. At least one of the first plurality of layers includes titanium oxynitride (TiON). A first transistor including the first gate electrode layer and a second transistor including the second gate electrode layer are metal oxide semiconductor field effect transistors (MOSFETs) having the same channel conductivity type, and a threshold voltage of the first transistor is smaller than a threshold voltage of the second transistor.
Abstract:
In a semiconductor device, a first active area, a second active area, and a third active area are formed on a substrate. A first gate electrode is formed on the first active area, a second gate electrode is formed on the second active area, and a third gate electrode is formed on the third active area. The first gate electrode has a first P-work-function metal layer, a first capping layer, a first N-work-function metal layer, a first barrier metal layer, and a first conductive layer. The second gate electrode has a second capping layer, a second N-work-function metal layer, a second barrier metal layer, and a second conductive layer. The third gate electrode has a second P-work-function metal layer, a third capping layer, a third N-work-function metal layer, and a third barrier metal layer. The third gate electrode does not have the first and second conductive layers.
Abstract:
A variable resistance memory device includes a gate pattern and a dummy gate pattern provided at the same level on a substrate, a first contact pattern provided on the dummy gate pattern, and a variable resistance pattern provided between the dummy gate pattern and the first contact pattern. The gate pattern and the dummy gate pattern define conductive electrodes of functional and non-functional transistors, respectively. The first contact pattern and the dummy gate pattern define upper and lower electrodes on the variable resistance pattern, respectively. Related fabrication methods are also discussed.
Abstract:
A variable resistance memory device includes a gate pattern and a dummy gate pattern provided at the same level on a substrate, a first contact pattern provided on the dummy gate pattern, and a variable resistance pattern provided between the dummy gate pattern and the first contact pattern. The gate pattern and the dummy gate pattern define conductive electrodes of functional and non-functional transistors, respectively. The first contact pattern and the dummy gate pattern define upper and lower electrodes on the variable resistance pattern, respectively. Related fabrication methods are also discussed.