Abstract:
The present invention relates to a method and to an apparatus for optimizing the power consumption of a terminal in a mobile communication system. The method for optimizing power consumption of a terminal in a mobile communication system comprises: a determination step of determining whether there is a need for changing a configuration for a discontinuous reception operation of the terminal; and a transmission step of transmitting, to a base station, a request message for a change in the discontinuous reception operation, if it is determined that the change is needed.
Abstract:
To solve the above-mentioned problem, the method for transmitting and receiving a signal by user equipment (UE) through one or more cells, according to one embodiment of the present specification, comprises the steps of: receiving, from a base station, a first message indicating whether one or more cells usable by the UE are enabled; determining which cells to enable or disable on the basis of the first message; and enabling or disabling the selected cells. According to the embodiment of the present specification, by aggregating carriers amongst different base stations, a possibility for the UE to transmit and receive high-speed data through carrier aggregation can increase.
Abstract:
To solve the above-mentioned problem, the method for transmitting and receiving a signal by user equipment (UE) through one or more cells, according to one embodiment of the present specification, comprises the steps of: receiving, from a base station, a first message indicating whether one or more cells usable by the UE are enabled; determining which cells to enable or disable on the basis of the first message; and enabling or disabling the selected cells. According to the embodiment of the present specification, by aggregating carriers amongst different base stations, a possibility for the UE to transmit and receive high-speed data through carrier aggregation can increase.
Abstract:
Provided are a method and apparatus for dormant mode operation in a user equipment. During dormant mode, data transmission between the user equipment and network is suspended. For dormant mode operation, the user equipment determines whether to enter dormant mode, and sends, upon determining to enter dormant mode, a dormant mode entry message containing dormant mode time information to the network.
Abstract:
The present invention proposes a method for activating secondary carriers in addition to the primary carrier in a wireless communication system supporting carrier aggregation technology. Through the present invention, the UE sorts the operations for activating an SCell into two groups that are executed at different timings, thereby facilitating communication without malfunctioning.
Abstract:
A method and user equipment (UE) for obtaining power headroom information in a communication system are provided. The method includes acquiring information for a path loss reference, wherein the information for the path loss reference indicates whether the UE applies as the path loss reference either a downlink of a primary cell or a downlink of a secondary cell (SCell), triggering a power headroom report (PHR) if a prohibitPHR-Timer expires and a path loss is changed more than a threshold for at least one activated cell which is used as the path loss reference, and obtaining power headroom information for each activated cell, if extended PHR is used and an uplink resource is allocated for new transmission.
Abstract:
Methods and apparatuses are provided in a wireless communication system. Packet data convergence protocol (PDCP) configuration information that configures a PDCP entity of the terminal to use an uplink data compression (UDC) is received from a base station. The PDCP entity generates a UDC header and a UDC data block, based on the PDCP configuration information. The PDCP entity ciphers the UDC header and the UDC data block. The PDCP entity generates PDCP data including a PDCP header, the ciphered UDC header and the ciphered UDC data block. The generated PDCP data is transmitted to the base station. A header compression is not configured in case that the UDC is configured.
Abstract:
The present disclosure relates to converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT), and may be applied to intelligent services, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method according to disclosed aspects includes receiving a first control message including a first random access response window for a first cell group, receiving a second control message for adding a second cell group, including information on a second random access response window size for the second cell group, transmitting, on a cell of the second cell group, a random access preamble, and monitoring, on the cell of the second cell group, a random access response based on the second random access response window size for the second cell group.
Abstract:
The present invention relates to a method and an apparatus for logging a radio resource control (RRC) failure of user equipment (UE) and receiving the log. According to one embodiment of the present invention, a method for logging an RRC failure of UE may comprise the steps of: attempting random access; if the failure of random access is sensed, logging information on the failure; and if the success of random access is sensed, transmitting information on the failure logged before the success to a connected base station. According to one embodiment of the present invention, an apparatus and a method which effectively log a channel state or a connection failure can be provided.
Abstract:
The present invention relates to a method and apparatus for efficiently controlling access for system load adjustment in mobile communication systems. A method for transmitting and receiving data by a terminal including a user equipment (UE) non access stratum (NAS) and a UE access stratum (AS) includes the steps of: receiving by the UE AE, information including emergency call-related information which includes barring information by type for the emergency call, from a base station; transmitting, by the UE NAS, a service request for the emergency call to the UE AS; and determining, by the UE AS, whether to bar the service request on the basis of emergency call-related information. During an emergency call transmission, network congestion can be easily controlled by enabling various types of emergency calls to be transmitted, and enabling access to be barred information according to the situation of a communication network and types of emergency calls.