Abstract:
A mobile terminal in a mobile communication system supporting device to device (D2D) communication, and a method for operating the mobile terminal are provided. The terminal includes a first radio frequency (RF) chain configured to transmit a mobile communication signal and a second RF chain configured to receive a mobile communication signal, for mobile communication with a base station, a switching unit including a plurality of switches configured to establish transmission and reception paths in the first and second RF chains, and a controller configured to control switching of the switching unit to establish transmission and reception paths of a D2D communication signal for D2D communication by combining a part of the first RF chain with a part of the second RF chain. The combination of the parts of the first and second RF chains is different according to a D2D communication frequency band.
Abstract:
A distributed scheduling method in a Device-to-Device (D2D) communication system is provided. The method includes transmitting, to a peer device, first resource information including a link identifier and start position information of resources to be allocated, receiving, from the peer device, second resource information in which at least one of the resource start position information and a resource allocation amount is adjusted based on the first resource information, and determining the resource start position based on the first resource information and second resource information.
Abstract:
A device and a method for performing Device to Device (D2D) communication in a wireless communication system are provided. The method includes transmitting information on a self-frequency band selected from all frequency bands for the D2D communication, to the second mobile station, receiving information on a counterpart-frequency band selected for the D2D communication, from the second mobile station, determining transmission and reception frequency bands to be used for the D2D communication, based on the information on the self-frequency band and the information on the counterpart-frequency band, transmitting data to the second mobile station in the determined transmission frequency band, and receiving data from the second mobile station in the determined reception frequency band.
Abstract:
A method for transmitting data in a second device that performs a Device-to-Device (D2D) service is provided. The method includes determining cooperative communication, if a value indicating a channel condition between a first device and a third device is less than or equal to a predetermined threshold, overhearing data transmitted from the first device to the third device and overhearing a response signal transmitted from the third device to the first device, to identify a transmission-failed data block of the first device, and if there are data transmission resources left at a predetermined scheduled data transmission time, transmitting the transmission-failed data block of the first device to the third device by piggybacking the transmission-failed data block on transmission data of the second device.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method for communication by a base station is provided. The method includes transmitting a scheduling assignment including a first part of a destination identifier (ID), and transmitting a medium access control (MAC) protocol data unit (PDU) including a MAC header including a user equipment (UE) ID and a second part of the destinationID.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system that is to support higher data transmission rates after 4G communication systems such as LTE. A method, by a MeNB, for switching a SeNB communicating with a UE in a wireless communication system, provided in an embodiment of the present disclosure, includes receiving, from the UE, a measurement report (MR) of the at least two SeNB neighboring with the UE, determining whether predetermined switch criteria are satisfied based on the MR, and transmitting, to the UE and a first SeNB or a second SeNB, a switch message indicating switching of an SeNB cooperating with the MeNB for communication with the UE from the first SeNB to the second SeNB, based on whether the switch criteria are satisfied.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system that is to support higher data transmission rates after 4G communication systems such as LTE. The present disclosure provides a communication method by a terminal in a wireless communication system, comprising the operations of: transmitting to a network provider's server information indicating a permission for outputting a banner on a screen of the terminal; receiving from the provider's server a key that is used for filtering a discovery code; receiving the discovery code from one or more access points (AP), and filtering the received discovery code using the key; requesting from the provider's server banner information with respect to the filtered discovery code, and receiving the banner information in response to the request; and outputting a banner on the screen using the received banner information, and transmitting an output report of the banner to the provider's server.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method and apparatus for performing a relay communication are provided. A remote user equipment (UE) according to the present disclosure is configured to acquire a first parameter related to relay load from each of a plurality of relay candidate UEs, to select a relay UE which will perform a relay communication with the remote UE from among the plurality of relay candidate UEs based on the first parameter acquired from each of the plurality of relay candidate UEs, and to perform the relay communication with the selected relay UE. The first parameter is generated based on cellular communication load between a base station (BS) connected to a corresponding relay candidate UE and the corresponding relay candidate UE.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method for communication by a base station is provided. The method includes transmitting a scheduling assignment including a first part of a destination identifier (ID), and transmitting a medium access control (MAC) protocol data unit (PDU) including a MAC header including a user equipment (UE) ID and a second part of the destination ID.
Abstract:
The present invention relates to a two-step search procedure for D2D communication. A method for D2D communication includes: obtaining a discovery code and a multicast identifier to be used for transmitting additional information on an application program through a D2D multicast subframe, based on an identifier of an application program of a device; and broadcasting the discovery code and the multicast identifier in a discovery subframe.