Abstract:
A hand control device for controlling a peripheral system is disclosed. The hand control device can include a handle configured to be grasped by a user. The handle can comprise a body portion to be supported against a palm of the user. The hand control device can also include a finger control supported about the handle and comprising a rotatable joint to facilitate control based on flexion/extension of an index finger of the user. In addition, the hand control device can include a thumb control supported about the handle and comprising first and second rotatable joints to facilitate control based on flexion/extension and abduction/adduction of a thumb of the user.
Abstract:
Device coordinated robotic control technology is described. A network of robotic devices is established. An anthropomorphic motion is sensed from an operator. One or more signals are generated that are representative of at least a portion of the anthropomorphic motion. The one or more signals are converted into a collective set of commands to actuate the network of robotic devices. The collective set of commands is functionally equivalent to the anthropomorphic motion.
Abstract:
Systems, devices, and methods for gathering data from a horse and rider and providing training to the rider are provided. In one aspect, for example, a method of training an equestrian rider can include performing a ride by an equestrian rider on a horse, and obtaining ride data from the ride, the ride data including video, inertial measurements, rider joint, head, torso, and/or limb information, horse joint, head, torso, and/or limb information, and at least one force measurement between the horse and the rider during the rider. The ride data can then be analyzed and at least one riding improvement to be made by the rider can be identified, and the at least one riding improvement to be made to the rider can be relayed to the rider to provide training for a subsequent ride.
Abstract:
A legged robotic device is disclosed. The legged robotic device can include a mechanism formed at least in part by a plurality of support members coupled together for relative movement defining a plurality of degrees of freedom, at least some of the plurality of degrees of freedom corresponding to degrees of freedom of a human leg. The legged robotic device can also include a primary drive actuator operable to apply a force or a torque to the support members in a first of the plurality of degrees of freedom. In addition, the legged robotic device can include a second actuator operable to apply a force or a torque to the support members in a second of the plurality of degrees of freedom. The mechanism can be configured to move in a gait-like motion that emulates human gait. The primary drive actuator can be sufficient to actuate the mechanism to move the mechanism in the gait-like motion. The mechanism can be dynamically modified by actuating the second actuator.
Abstract:
A teleoperated robotic system that includes master control arms, slave arms, and a mobile platform. In use, a user manipulates the master control arms to control movement of the slave arms. The teleoperated robotic system can include two master control arms and two slave arms. The master control arms and the slave arms can be mounted on the platform. The platform can provide support for the master control arms and for a teleoperator, or user, of the robotic system. Thus, a mobile platform can allow the robotic system to be moved from place to place to locate the slave arms in a position for use. Additionally, the user can be positioned on the platform, such that the user can see and hear, directly, the slave arms and the workspace in which the slave arms operate.
Abstract:
A legged robotic device is disclosed. The legged robotic device can include a plurality of support members coupled together for relative movement defining a plurality of degrees of freedom, which can correspond to degrees of freedom of a human leg. The legged robotic device can also include actuators to apply forces or torques to the support members in the degrees of freedom. In addition, the legged robotic device can include potential energy storage mechanisms associated with the degrees of freedom operable to store potential energy as a result of relative movement of the support members in the degrees of freedom and to provide at least a portion of the stored potential energy to the support members as compensating forces or torques to assist the actuators. In one aspect, elastic potential energy can be stored. A spring rate and/or a zero position of the potential energy storage mechanisms can be dynamically variable.
Abstract:
An end effector for a robotic arm is disclosed. The end effector includes a grasping apparatus having a gripping member and an appendage extending from the gripping member forming a channel between the griping member and the appendage. The channel is configured to receive at least a portion of an article, such as a latch for a container, to be manipulated by the end effector.
Abstract:
An end effector for a robotic arm is disclosed. The end effector includes a grasping apparatus having a gripping member and an appendage extending from the gripping member forming a channel between the griping member and the appendage. The channel is configured to receive at least a portion of an article, such as a latch for a container, to be manipulated by the end effector.
Abstract:
A method for controlling a tele-operated robot agile lift system is disclosed. The method comprises manipulating a human-machine interface of a master robot located on a mobile platform. The human machine interface is kinematically equivalent to a user's arm with a plurality of support members. A position value and a torque value is measured for each support member. The position value and torque value are communicated to support members of a kinematically equivalent slave arm to position the support members to correspond with a position of the human-machine interface.
Abstract:
A method of imaging a target using a miniaturized imaging device is disclosed comprising providing a miniaturized imaging device having a stationary lens system and an imaging array, wherein the distance from a distal end of the stationary lens system to the imaging array is fixed. The miniaturized imaging device is advanced near the desired target and a distance from a distal end of the stationary lens system to the desired target is determined. A desired wavelength of light is calculated based on the determined distance from the distal end of the stationary lens system to the desired target and the desired wavelength of light is propagated onto the target.