Abstract:
A remanufacturing method is provided for a process cartridge which is detachably mountable to a main assembly of an electrophotgraphic image forming apparatus. The method includes a unit separating step of separating first and second units of the cartridge from each other, a developing roller dismounting step of dismounting a developing roller mounted to the second unit, which has been separated by the separation step, a sealing step of sealing with a sealant a connecting portion between a developer frame and a developing frame of the second unit at one longitudinal end of the frames, a developer refilling step of refilling developer into a developer accommodating portion of the second unit that has been separated by the separation step, a developing roller remounting step of remounting the developing roller to the second unit that has been separated by the separation step, and a unit re-coupling step of recoupling the first unit and the second unit with each other, by which the process cartridge is remanufactured without remounting a toner seal to the developer supply opening, which was unsealed by removing the toner seal upon the start of use of the process cartridge.
Abstract:
A toner for developing electrostatic latent images with a good combination of fixability, anti-offset characteristic, anti-sticking characteristic and pulverizability contains a composition comprising a colorant or magnetic material and a binder resin. The binder resin has 0.1 to 60 wt. % of a chloroform-insoluble or a THF (tetrahydrofuran)-insoluble component and a THF-soluble component, the THF-soluble providing a molecular weight distribution in the chromatogram of GPC (gel permeation chromatography) thereof such that there is a main peak in the molecular weight range of 1,000 to 25,000 and a sub-peak or shoulder in the molecular weight range of 2,000 to 150,000. The binder resin may suitably be obtained through two polymerization steps including a solution polymerization step and a suspension polymerization step.
Abstract:
A toner for developing electrostatic latent images with a good combination of fixability, anti-offset characteristic, anti-sticking characteristic and pulverizability is provided as a composition comprising a colorant or magnetic material and a binder resin. The binder resin has 0.1 to 60 wt. % of a chloroform-insoluble or a THF (tetrahydrofuran)insoluble and a THF-soluble, the THF-soluble providing a molecular weight distribution in the chromatogram of GPC (gel permeation chromatography) thereof such that there are a main peak in the molecular weight range of 1,000 to 25,000 and a sub-peak or shoulder in the molecular weight range of 2,000 to 150,000. The binder resin may suitably be obtained through two polymerization steps including a solution polymerization step and a suspension polymerization step.
Abstract:
A working material used in a magnetic refrigerator radiates heat when it is magnetized and absorbs heat when it is demagnetized. The working material is cylindrical and extends vertically. A heat pipe has a cylindrical internal space directly surrounding the peripheral surface of the working material and containing helium gas as a heat medium. The peripheral surface of the working material in contact with the internal space functions as a condensing surface of the heat pipe. A superconductive coil surrounds the working material and intermittently applies a magnetic field thereto. A refrigerator unit supplies a cooling space with helium gas at 20.degree. K. or below. The helium gas from the refrigerator unit removes heat produced from the working material when it is adiabatically magnetized by the coil. When the working material is adiabatically demagnetized, it rapidly absorbs heat to cool the helium gas in the internal space of the heat pipe. The helium gas condenses on the peripheral surface of the working material, and falls in drops into the internal space to be stored at the lower end portion thereof. Thus, heat is transferred in one direction or upward in the heat pipe.
Abstract:
A method and an apparatus for efficiently producing a high-purity CNT assembly of a high specific surface area are provided in which a feedstock gas is contacted to a catalyst in an optimum form for CNT growth.A carbon nanotube producing apparatus of the present invention includes: a synthesis furnace; a gas supply pipe and a gas exhaust pipe in communication with the synthesis furnace; heating means that heats inside of the synthesis furnace to a predetermined temperature; and gas blowing means that blows a feedstock gas into the synthesis furnace after the feedstock gas is supplied through the gas supply pipe. The feedstock gas supplied through the gas supply pipe is supplied into a heating region of the synthesis furnace heated by the heating means, so as to produce a carbon nanotube from a surface of a catalyst layer provided on a base. The feedstock gas is evacuated through the gas exhaust pipe. The carbon nanotube producing apparatus further includes residence time adjusting means that allows the feedstock gas to contact the surface of the catalyst layer on the base in a substantially uniform amount after substantially the same residence time.
Abstract:
A predicted film formation rate value is computed based on a film formation rate prediction formula obtained in advance and apparatus parameters obtained during a previously-performed film formation process. A processing time required for an amount of film formed on a wafer to reach a predetermined target film thickness is computed based on the computed predicted film formation rate value and the target film thickness. Then, according to the computed processing time, a film-formation process is performed on wafers. In addition, it is determined whether the computed predicted film formation rate value is within a predetermined range, and only when it is determined to be within the predetermined range, the film formation process may be performed.
Abstract:
The present invention provides a method and an apparatus capable of mass-producing an aligned CNT aggregate of a desired height through automatic control of a CVD apparatus according to a growth height of the aligned CNT aggregate. According to the present invention, an aligned carbon nanotube aggregate growing on a substrate is irradiated with a parallel ray, and the size of a resulting shadow is measured with a measurement section using a telecentric optical system, which acts as if it has an infinite focal length, so as to detect, in real time, a growth height of the aligned carbon nanotube aggregate being synthesized, and the synthesis of the aligned carbon nanotube aggregate is terminated when the growth height of the aligned carbon nanotube aggregate reaches a predetermined state.
Abstract:
An ion implanter is provided with a system for monitoring parameters of the ion implanter in real time to control respective components in the ion implanter. This system is allowed to have a function of calculating an accumulated dose distribution during ion implantation treatment and correcting a mechanical scan speed of a wafer holding section in a Y direction so as to render an accumulated dose uniform, a function of changing a magnetic field of a mass analyzing section to thereby control a center position of an ion beam, and a function of varying a suppression voltage of an aperture and an ion beam current to control a diameter of the ion beam.
Abstract:
An ion implanter is provided with a system for monitoring parameters of the ion implanter in real time to control respective components in the ion implanter. This system is allowed to have a function of calculating an accumulated dose distribution during ion implantation treatment and correcting a mechanical scan speed of a wafer holding section in a Y direction so as to render an accumulated dose uniform, a function of changing a magnetic field of a mass analyzing section to thereby control a center position of an ion beam, and a function of varying a suppression voltage of an aperture and an ion beam current to control a diameter of the ion beam.
Abstract:
A remanufacturing method is disclosed for a process cartridge detachably mountable to a main assembly of an electrophotographic image forming apparatus, wherein the process cartridge includes first and second frames rotatably coupled relative to each other. The remanufacturing method includes (a) a separating step of separating the first and second frames; (b) a step of dismounting a developing roller mounted in the second frame; (c) a step of peeling off an elastic sealing member for providing a seal between the second frame and the developing roller; (d) a step of sticking a double coated tape on a seat on which the elastic sealing member has been stuck; (e) a step of filling developer into a developer accommodating portion of the second frame; (f) a step of mounting a developing roller to the second frame; and (g) a step of coupling the separated first and second frames.