Abstract:
Separation of a product of digestion of cellulosic biomass solids may be challenging due to the various components contained therein. Methods and systems for processing cellulosic biomass, particularly a reaction product of a hydrothermal reaction containing lignin-derived products, such as phenolics, comprise providing the reaction product to a separation zone comprising a liquid-liquid phase separation unit. The liquid-liquid phase separation unit can provide an aqueous portion and a non-aqueous portion, where these portions can be separated into various fractions individually. For example, desirable compounds in the aqueous portion and non-aqueous portion can be recovered from the portions individually and optionally combined to be further processed into a fuels product. Heavier components in the aqueous portion and non-aqueous portion can be recovered from the portions individually and used in the process, such as phenolics that can be used as a digestion solvent.
Abstract:
A method of hydrothermal hydrocatalytic treating biomass is provided. Lignocellulosic biomass solids is provided to a hydrothermal digestion unit in the presence of a digestive solvent, and a supported hydrogenolysis catalyst containing (a) sulfur, (b) Mo or W, and (c) Co, Ni or mixture thereof, incorporated into a group 4 metal oxide support; (ii) heating the lignocellulosic biomass solids and digestive solvent in the presence of hydrogen, and the supported hydrogenolysis catalyst thereby forming a product solution containing plurality of oxygenated hydrocarbons, said catalyst retaining a crush strength of at least 50% after being subjected to an aqueous phase stability test compared with before the aqueous phase stability test or a crush strength of at least 0.25 kg after being subjected to an aqueous phase stability test.
Abstract:
A method of hydrothermal hydrocatalytic treating biomass is provided. Lignocellulosic biomass solids is provided to a hydrothermal digestion unit in the presence of a digestive solvent, and a supported hydrogenolysis catalyst containing (a) sulfur, (b) Mo or W, and (c) Co, Ni or mixture thereof, incorporated into an alumina support, which support is predominantly alpha alumina; (ii) heating the lignocellulosic biomass solids and digestive solvent in the presence of hydrogen, and supported hydrogenolysis catalyst thereby forming a product solution containing plurality of oxygenated hydrocarbons, said alumina support having a specific surface area of up to about 30 m2/g and said catalyst retaining a crush strength of at least 50% after being subjected to an aqueous phase stability test compared with before the aqueous phase stability test or a crush strength of at least 0.25 kg after being subjected to an aqueous phase stability test.
Abstract:
Digestion of cellulosic biomass solids may be complicated by release of lignin therefrom. Methods for digesting cellulosic biomass solids may comprise: providing cellulosic biomass solids in a digestion solvent; at least partially converting the cellulosic biomass solids into a phenolics liquid phase comprising lignin, an aqueous phase comprising an alcoholic component derived from the cellulosic biomass solids, and an optional light organics phase; and separating the phenolics liquid phase from the aqueous phase.
Abstract:
Digestion of cellulosic biomass solids to form a hydrolysate may be accompanied by decomposition if the soluble carbohydrates produced from the biomass under hydrothermal digestion conditions are not transformed into a more stable reaction product. Biomass conversion systems may be configured to address this issue and others. Biomass conversion systems can comprise: a hydrothermal digestion unit; a first catalytic reduction reactor unit fluidly coupled to the hydrothermal digestion unit along its height by two or more fluid inlet lines and two or more fluid return lines, the first catalytic reduction reactor unit containing a catalyst capable of activating molecular hydrogen; and a fluid circulation loop comprising the hydrothermal digestion unit and a second catalytic reduction reactor unit that contains a catalyst capable of activating molecular hydrogen.
Abstract:
Digestion of cellulosic biomass solids to form a hydrolysate may be conducted with in situ catalytic reduction to transform soluble carbohydrates in the hydrolysate into a more stable reaction product. Biomass conversion systems for performing such a transformation can comprise: a hydrothermal digestion unit that also contains a first catalyst capable of activating molecular hydrogen, the first catalyst being fluidly mobile within the hydrothermal digestion unit; an optional hydrogen feed line that is operatively connected to the hydrothermal digestion unit; a fluid circulation loop comprising the hydrothermal digestion unit and a catalytic reduction reactor unit that contains a second catalyst capable of activating molecular hydrogen; and a catalyst transport mechanism external to the hydrothermal digestion unit, the catalyst transport mechanism being capable of conveying at least a portion of the first catalyst to another location from a catalyst collection zone located within the hydrothermal digestion unit.