Abstract:
Digestion of cellulosic biomass solids can be enhanced in the presence of a phenolic solvent. Methods for digesting cellulosic biomass solids can comprise providing cellulosic biomass solids containing up to about 50% water by mass in a digestion medium comprising about 50% or more of an organic solvent by volume; heating the cellulosic biomass solids and the digestion medium in a digestion unit in the presence of molecular hydrogen and a slurry catalyst capable of activating molecular hydrogen, thereby forming an alcoholic component derived from the cellulosic biomass solids and liberating lignin therefrom; wherein the digestion medium and the water form a biphasic mixture in which the alcoholic component, slurry catalyst, and lignin are contained; removing at least a portion of the biphasic mixture from the digestion unit; converting at least a portion of the lignin into a phenolic solvent; and returning the phenolic solvent to the digestion unit.
Abstract:
Digestion of cellulosic biomass solids may be complicated by release of lignin therefrom. Methods for digesting cellulosic biomass solids may comprise: providing cellulosic biomass solids in a digestion solvent; at least partially converting the cellulosic biomass solids into a phenolics liquid phase comprising lignin, an aqueous phase comprising an alcoholic component derived from the cellulosic biomass solids, and an optional light organics phase; combining at least the phenolics liquid phase and the aqueous phase with one another, thereby forming a combined phase; and separating at least a portion of the alcoholic component from at least a portion of the combined phase.
Abstract:
Digestion of cellulosic biomass solids may be complicated by lignin release therefrom, which can produce a highly viscous phenolics liquid phase comprising lignin polymer. Methods for digesting cellulosic biomass solids may comprise: providing cellulosic biomass solids in the presence of a digestion solvent, molecular hydrogen, and a slurry catalyst capable of activating molecular hydrogen; at least partially converting the cellulosic biomass solids into a phenolics liquid phase comprising lignin, an aqueous phase comprising an alcoholic component derived from the cellulosic biomass solids, and an optional light organics phase; wherein at least a portion of the slurry catalyst accumulates in the phenolics liquid phase as it forms; and reducing the viscosity of the phenolics liquid phase.
Abstract:
Digesting cellulosic biomass solids in the presence of a well-distributed slurry catalyst capable of activating molecular hydrogen may limit the amount of degradation products that form during digestion. Methods for digesting cellulosic biomass solids can comprise: providing cellulosic biomass solids and a slurry catalyst in a hydrothermal digestion unit, the slurry catalyst being capable of activating molecular hydrogen; distributing the slurry catalyst within the cellulosic biomass solids using upwardly directed fluid flow in the hydrothermal digestion unit; heating the cellulosic biomass solids in the hydrothermal digestion unit in the presence of the slurry catalyst, a digestion solvent, and molecular hydrogen, thereby forming a liquor phase comprising soluble carbohydrates; and performing a first catalytic reduction reaction on the soluble carbohydrates within the hydrothermal digestion unit, thereby at least partially forming a reaction product comprising a triol, a diol, a monohydric alcohol, or any combination thereof in the hydrothermal digestion unit.
Abstract:
A process for producing alpha-olefins comprising contacting an ethylene feed with an oligomerization catalyst system in an oligomerization reaction zone under oligomerization reaction conditions to produce a product stream comprising alpha-olefins wherein the catalyst system comprises an iron-ligand complex and a co-catalyst and the molar ratio of oxygen to iron being fed to the oligomerization reaction zone is of from 1:1 to 200:1. Alternatively, the molar ratio of oxygen to aluminum in MMAO being fed to the oligomerization reaction zone is less than 1:5.
Abstract:
A method comprises introducing biomass solids to a digester comprising a reactor, a circulation system including a first injector; providing a catalyst-containing digestion medium and an organic solvent layer floating thereon; circulating the medium through the circulation system; flowing gas through the medium; keeping the medium hot enough to digest the solids; and operating the digester such a headspace exists above the solvent. The digester includes a first eductor having an inlet in the headspace, a second eductor having an inlet in the organic layer, and a downdraft tube having an inlet in the digestion medium. A motive fluid flowing from the first injector draws gas from the headspace into the first eductor, a motive fluid flowing from the first eductor draws fluid from the organic layer into the second eductor, and a motive fluid flowing from the second eductor draws fluid from the digestion medium into the downdraft tube.
Abstract:
Separation of a product of digestion of cellulosic biomass solids may be challenging due to the various components contained therein. Methods and systems for processing cellulosic biomass, particularly a reaction product of a hydrothermal reaction containing lignin-derived products, such as phenolics, and organic salts, comprise providing acid solution to the organic salt containing process stream to convert the organic acid salts to acids to for further processing.
Abstract:
Digesting cellulosic biomass in the presence of a slurry catalyst may reduce degradation product formation, but catalyst distribution and retention can be problematic. Digestion methods can comprise: providing cellulosic biomass solids and a slurry catalyst capable of activating molecular hydrogen in a digestion unit; providing a digestible filter aid in the digestion unit; distributing the slurry catalyst within the cellulosic biomass solids using fluid flow; retaining at least a portion of the slurry catalyst in a fixed location using the digestible filter aid; heating the cellulosic biomass solids in the presence of the slurry catalyst, a digestion solvent, and molecular hydrogen, thereby forming a liquor phase comprising soluble carbohydrates; and performing a catalytic reduction reaction on the soluble carbohydrates within the digestion unit, thereby at least partially forming a reaction product comprising a triol, a diol, a monohydric alcohol, or any combination thereof in the digestion unit.
Abstract:
A process for producing alpha-olefins comprising: a) contacting an ethylene feed with an oligomerization catalyst system in an oligomerization reaction zone under oligomerization reaction conditions to produce a product stream comprising alpha-olefins; and b) cooling at least a portion of the reaction zone using a heat exchange medium having an inlet temperature and an outlet temperature wherein the catalyst system comprises a metal-ligand complex and a co-catalyst; the oligomerization reaction conditions comprise a reaction temperature of greater than 70° C.; and the difference between the reaction zone temperature and the inlet temperature of the heat exchange medium is from 0.5 to 15° C.
Abstract:
Separation of a product of digestion of cellulosic biomass solids may be challenging due to the various components contained therein. Methods and systems for processing cellulosic biomass, particularly a reaction product of a hydrothermal reaction containing lignin-derived products, such as phenolics, comprise providing the reaction product to a separation zone comprising a liquid-liquid extraction or phase separation unit. The liquid-liquid extraction or phase separation unit can provide an aqueous portion and a non-aqueous portion, where these portions can be separated into various fractions individually. For example, desirable compounds in the aqueous portion and non-aqueous portion can be recovered from the portions individually and optionally combined to be further processed into a fuels product. Heavier components in the aqueous portion and non-aqueous portion can be recovered from the portions individually and used in the process, such as phenolics that can be used as a digestion solvent.