Abstract:
The invention relates to a process for the preparation of an olefinic product comprising ethylene and/or propylene from an oxygenate comprising: a) an oxygenate conversion step wherein a gaseous effluent comprising olefins is obtained; b) separation of water from the effluent; c) compression of the effluent; d) acid gas removal from the effluent wherein the water-depleted compressed gaseous effluent is treated with a caustic solution in a caustic tower and a non-aqueous liquid stream comprising one or more aromatic C7+ hydrocarbons is added to the caustic solution to control the formation of red oil; and e) separating the olefinic product from the gaseous effluent treated in step d).
Abstract:
This invention concerns a method for recovering carbon monoxide and carbon dioxide from Fischer-Tropsch off-gas by feeding Fischer-Tropsch off-gas through a column comprising an adsorbent bed, and discharging effluent, optionally rinsing the column and the adsorbent bed by feeding NG and discharging effluent until at least 60% of the carbon monoxide that was present in the bed is discharged, pressurizing the column and adsorbent bed with NG, rinsing the column and the adsorbent bed by feeding NG until at least 50% of the carbon dioxide present at the commencement of this rinsing step is discharged, rinsing the column and adsorbent bed by feeding a mixture of hydrogen and nitrogen, pressurizing the column and adsorbent bed by feeding a mixture of hydrogen and nitrogen. With this method a feed comprising at least 50 vol % carbon monoxide can be produced. Furthermore, methane and carbon dioxide at a high pressure can be recovered from the Fischer-Tropsch gas. This can be fed to a gasifier or a reformer. In a preferred embodiment a gas comprising at least 80 vol % hydrogen is produced as well.
Abstract:
This invention concerns a method for recovering carbon monoxide and carbon dioxide from Fischer-Tropsch off-gas by feeding Fischer-Tropsch off-gas through a column comprising an adsorbent bed, and discharging effluent, optionally rinsing the column and the adsorbent bed by feeding carbon dioxide and discharging effluent until at least 60% of the carbon monoxide that was present in the bed is discharged, pressurizing the column and adsorbent bed with carbon dioxide, rinsing the column and the adsorbent bed by feeding carbon dioxide, until at least 60% of the methane and optionally an amount equal to at least 50% of the carbon dioxide present at the commencement of this rinsing step is discharged, rinsing the column and adsorbent bed by feeding a mixture of hydrogen and nitrogen, pressurizing the column and adsorbent bed by feeding a mixture of hydrogen and nitrogen. With this method a feed comprising at least 50 vol % carbon monoxide can be produced. Furthermore, methane and carbon dioxide at a high pressure can be recovered from the Fischer-Tropsch gas. This can be fed to a gasifier or a reformer. In a preferred embodiment a gas comprising at least 80 vol % hydrogen is produced as well.
Abstract:
The present invention relates to a process for the oxidative regeneration of a deactivated catalyst comprising providing a catalyst comprising molecular sieve in hydrogen form to a guard zone; passing a regeneration gas stream comprising oxidant through the guard zone to remove part of one or both of any alkali metal ion and alkaline earth metal ion from the regeneration gas stream, to provide a treated regeneration gas stream; providing deactivated catalyst comprising molecular sieve in a regeneration zone, said deactivated catalyst from one or both of an oxygenate to olefin process and an olefin cracking process; regenerating the deactivated catalyst in the regeneration zone with the treated regeneration gas stream to provide regenerated molecular sieve catalyst; wherein said catalyst in said guard zone is one or both of deactivated catalyst comprising molecular sieve in hydrogen form and regenerated catalyst comprising regenerated molecular sieve in hydrogen form.
Abstract:
The present invention relates to a process for removing oxygenate from an olefin stream comprising oxygenate, comprising providing to an oxygenate recovery zone the olefin stream comprising oxygenate and a liquid solvent comprising: (a) butanol; (b)alkyl tert-alkyl ether; or (c) alkyl tert-alkyl ether and butanol, treating the olefin stream comprising oxygenate with the liquid solvent, and retrieving from the oxygenate recovery zone at least one oxygenate-depleted olefinic product stream comprising olefin and a spent liquid solvent comprising at least part of the oxygenate.
Abstract:
The invention relates to a process for the preparation of ethylene and/or propylene comprising: (a) an oxygenate conversion step wherein a gaseous effluent comprising olefins is obtained; (b) subjecting the effluent to water removal and compression steps; (c) acid gas removal from the effluent obtained in step (b), wherein the gaseous effluent is treated with a caustic solution and a non-aqueous liquid stream comprising aromatic C7+ hydrocarbons is added to the caustic solution to control the formation of red oil, to obtain a treated gaseous effluent and a spent liquid phase comprising spent caustic solution, aromatic C7+ hydrocarbons and high molecular weight contaminants; and (d) separating an aqueous phase and a non-aqueous phase from the spent liquid phase; (e) purifying the non-aqueous phase by membrane separation using a hydrophobic non-porous or nano-porous membrane; and (f) separating the olefinic product from the treated gaseous effluent.
Abstract:
The present invention provides a process for preparing ethylene and/or propylene, wherein an oxygenate feedstock is contacted with a zeolite-comprising catalyst at a temperature in the range of from 500 to 700° C. to obtain a reactor effluent comprising ethylene and/or propylene and the oxygenate feedstock is contacted with the catalyst in a riser reactor having a reactor wall defining a flow trajectory towards a downstream outlet for reactor effluent, wherein at least oxygenate feedstock and catalyst are provided at one or more upstream inlets of the riser reactor and wherein C5 olefins are admitted to the riser reactor at one or more of locations along the length of the flow trajectory. The invention further provides a reaction system suitable for preparing ethylene and propylene.
Abstract:
A method for producing a gas comprising at least 80 vol % carbon monoxide from a Fischer-Tropsch off-gas comprises: (1) feeding Fischer-Tropsch off-gas through a column comprising an adsorbent bed at high pressure and discharging effluent; (2) reducing the pressure in the column and the bed slightly; (3) rinsing the column and the adsorbent bed with methane or a mixture of methane and carbon dioxide; (4) reducing the pressure of the column and adsorbent bed to a low pressure; (5) rinsing the column and adsorbent bed with a mixture of hydrogen and nitrogen; (6) pressurizing the column and adsorbent bed to a high pressure using a mixture of hydrogen and nitrogen. The product stream obtained in step (3) comprising at least 80 vol % carbon monoxide can be sent as feed to a Fischer-Tropsch reaction. In an embodiment, a gas comprising at least 80 vol % hydrogen is also produced.
Abstract:
A method for producing a gas comprising at least 80 vol % carbon monoxide from a Fischer-Tropsch off-gas comprising: (1) feeding Fischer-Tropsch off-gas through a column comprising an adsorbent bed at high pressure and discharging effluent; (2) reducing the pressure in the column and the bed slightly; (3) rinsing the column and the adsorbent bed with methane or carbon dioxide; (4) rinsing the column and the adsorbent bed with carbon dioxide; (5) reducing the pressure of the column and adsorbent bed to a low pressure; (6) rinsing the column and adsorbent bed with a mixture of hydrogen and nitrogen; (7) pressurizing the column and adsorbent bed to a high pressure using a mixture of hydrogen and nitrogen. The carbon monoxide rich product stream obtained in step (3) can be sent as feed to a Fischer-Tropsch reaction. In an embodiment, a gas comprising at least 80 vol % hydrogen is also produced.