摘要:
A gas separation device having a simple structure and reducing the cost incurred in gas separation. The gas separation device (100) includes an adsorption tower (110) having at least one part thereof exposed to an atmosphere at a higher or lower temperature than normal temperature, a mixed gas feed unit (120), an adsorbent (130) provided inside the adsorption tower to adsorb a matter contained in a mixed gas upon contact with the mixed gas in a prescribed pressure and temperature environment, and separate the matter from the mixed gas, a separated gas discharge unit (140) that discharges a separated gas from the adsorption tower, and an adsorbed gas discharge unit (150) that reduces the pressure inside the adsorption tower and discharges from the adsorption tower the adsorption gas which is adsorbed by the adsorption agent. Heat reserving elements (160) are arranged in the adsorption tower at positions upstream and downstream of the adsorption agent in the mixed gas supply direction respectively such that the mixed gas, separated gas, and adsorbed gas flow through the heat reserving elements.
摘要:
A simple and inexpensive gas separation device is provided. The gas separation device (100) includes: an adsorption tower (110) having an adsorbent (120) that adsorbs oxygen in a prescribed pressure and temperature environment, with at least one section thereof being exposed to a higher temperature atmosphere than a normal temperature; a first feed passage (132) connected to the adsorption tower for guiding into the adsorption tower air that has been blown from a blower device (130); a second feed passage (136) for guiding air, at a lower flow rate than the first feed passage, into the adsorption tower; a separated gas discharge path (140) connected to the adsorption tower for discharging a separated gas; a first heat exchanging unit (150) for exchanging heat between the separated gas discharged from the adsorption tower and the air guided into the adsorption tower from the first feed passage; an oxygen discharge unit (160) for reducing a pressure inside the adsorption tower, causing oxygen to desorb from the adsorption agent, and discharging oxygen from the adsorption tower; and a second heat exchanging unit (170) for exchanging heat between oxygen and the air guided into the adsorption tower from the second feed passage.
摘要:
A multicapillary bundle for use in a gas chromatograph. Each of the capillaries in the bundle is formed using a coating solution containing a stationary phase and a solvent. The capillaries are coated with stationary phase by reducing pressure at a vacuum end of the capillary and creating a moving interface between the coating solution and a film of stationary phase deposited on each of the capillaries. The reducing pressure at the vacuum end of the capillary and the temperature of the capillary are controlled to maintain motion of the moving interface away from the vacuum end of the capillary. Maintained movement of the interface prevents recoating of the stationary phase. A heating wire and capillaries are embedded in a thermally conductive polymer to create a highly responsive method of heating the multicapillary column. An electronic control device controls the feedback temperature of the multicapillary column using the heating wire.
摘要:
Processes and an apparatus for hydrogenating highly unsaturated hydrocarbons contained in an effluent stream to an unsaturated hydrocarbons or isomerizing the highly unsaturated hydrocarbons to other highly unsaturated hydrocarbons are provided. The effluent stream is contacted with a guard bed to remove at least a portion of impurities contained within the process stream and to isomerize at least a portion of the highly unsaturated hydrocarbons. In an aspect, the guard bed comprises a solid sulfur adsorption/isomerization catalyst composition. In an aspect, the effluent stream is contacted with a catalyst that comprises an inorganic support, palladium, and silver.
摘要:
A micro-porous material having agglomerates of precipitated silica, according to the formula MeOx.HiSiO2, The agglomerates are composed of porous particles, and the agglomerates exhibit a size in the range 0.5-500 μm. A gas filter having the micro-porous material, and a method of filtering air through the micro-porous material.
摘要:
A desulfurization method for a gas oil which includes a step of removing sulfur compounds contained in a gas oil distillate product by the adsorption with an adsorptive desulfurization agent formed of a fibrous active carbon and provided in an adsorption tower (1), and a desorption regeneration step of washing the used adsorptive desulfurization agent with an aromatic solvent to regenerate the desulfurization agent. The method allows the production of gas oil being satisfactorily freed of sulfur content at relatively low equipment and operation costs over a long period of time, and in the method, difficult-to-remove sulfur compounds, such as 4,6-DMDBT, and polycyclic aromatic compounds having two or more rings are selectively removed.
摘要:
This invention concerns a method for recovering carbon monoxide and carbon dioxide from Fischer-Tropsch off-gas by feeding Fischer-Tropsch off-gas through a column comprising an adsorbent bed, and discharging effluent, optionally rinsing the column and the adsorbent bed by feeding NG and discharging effluent until at least 60% of the carbon monoxide that was present in the bed is discharged, pressurizing the column and adsorbent bed with NG, rinsing the column and the adsorbent bed by feeding NG until at least 50% of the carbon dioxide present at the commencement of this rinsing step is discharged, rinsing the column and adsorbent bed by feeding a mixture of hydrogen and nitrogen, pressurizing the column and adsorbent bed by feeding a mixture of hydrogen and nitrogen. With this method a feed comprising at least 50 vol % carbon monoxide can be produced. Furthermore, methane and carbon dioxide at a high pressure can be recovered from the Fischer-Tropsch gas. This can be fed to a gasifier or a reformer. In a preferred embodiment a gas comprising at least 80 vol % hydrogen is produced as well.
摘要:
A simple and inexpensive gas separation device is provided. The gas separation device (100) includes: an adsorption tower (110) having an adsorbent (120) that adsorbs oxygen in a prescribed pressure and temperature environment, with at least one section thereof being exposed to a higher temperature atmosphere than a normal temperature; a first feed passage (132) connected to the adsorption tower for guiding into the adsorption tower air that has been blown from a blower device (130); a second feed passage (136) for guiding air, at a lower flow rate than the first feed passage, into the adsorption tower; a separated gas discharge path (140) connected to the adsorption tower for discharging a separated gas; a first heat exchanging unit (150) for exchanging heat between the separated gas discharged from the adsorption tower and the air guided into the adsorption tower from the first feed passage; an oxygen discharge unit (160) for reducing a pressure inside the adsorption tower, causing oxygen to desorb from the adsorption agent, and discharging oxygen from the adsorption tower; and a second heat exchanging unit (170) for exchanging heat between oxygen and the air guided into the adsorption tower from the second feed passage.
摘要:
In a feed clean-up process at least two adsorbents (2, 4) are installed in front of an oligomerization reactor (3). Olefin feed is sent over one adsorbent (2) and the nitrile poisons are adsorbed so that clean feed will enter the reactor (3). Before the adsorbent (2) will be saturated, the feed (1) is sent to the other, fresh adsorbent (4). At the same time oligomerization product from the reactor (3) is used to desorb nitriles from the spent adsorbent (2).
摘要:
The method of recovery and recycling of inert gases, especially noble gases, from processes such as vacuum furnaces and other applications. A first gas stream comprising the inert gas and oxidisable impurities, is supplied to an oxidation column comprising a metal oxide. The impurities in the first gas stream are oxidised in the column in the presence of the metal oxide to form a second gas stream containing carbon dioxide and water, the second gas stream is supplied to a regenerable carbon dioxide removal column; the carbon dioxide is removed from the second gas stream in the column to form a third gas stream. Water is removed from the third gas stream in an absorption column, and the exhausted, purified inert gas is collected from the absorption column for conveying to a process utilising the inert gas. The recovered gas stream is of around 6N purity (99.9999% pure) i.e. having 1 ppm total contaminants.