摘要:
While improving the frequency characteristics of a decoupling capacitor, suppressing the voltage drop of a source line and stabilizing it, the semiconductor device which suppressed decline in the area efficiency of decoupling capacitor arrangement is offered.Decoupling capacitors DM1 and DM2 are connected between the source line connected to the pad for high-speed circuits which supplies electric power to circuit block C1, and the ground line connected to a ground pad, and the capacitor array for high-speed circuits is formed. A plurality of decoupling capacitor DM1 are connected between the source line connected to the pad for low-speed circuits which supplies electric power to circuit block C2, and the ground line connected to a ground pad, and the capacitor array for low-speed circuits is formed. Decoupling capacitor DM1 differs in the dimension of a gate electrode from DM2.
摘要:
While improving the frequency characteristics of a decoupling capacitor, suppressing the voltage drop of a source line and stabilizing it, the semiconductor device which suppressed decline in the area efficiency of decoupling capacitor arrangement is offered. Decoupling capacitors DM1 and DM2 are connected between the source line connected to the pad for high-speed circuits which supplies electric power to circuit block C1, and the ground line connected to a ground pad, and the capacitor array for high-speed circuits is formed. A plurality of decoupling capacitor DM1 are connected between the source line connected to the pad for low-speed circuits which supplies electric power to circuit block C2, and the ground line connected to a ground pad, and the capacitor array for low-speed circuits is formed. Decoupling capacitor DM1 differs in the dimension of a gate electrode from DM2.
摘要:
A Schottky junction is formed at the connection between an SOI layer and a contact (namely, under an element isolation insulating film) without forming a P+ region with a high impurity concentration thereat. The surface of a body contact is provide with a barrier metal. A silicide is formed between the body contact and the SOI layer as a result of the reaction of the barrier metal and the SOI layer.
摘要:
A semiconductor device includes a semiconductor layer, a plurality of semiconductor elements formed on the semiconductor layer, and an isolation film provided in a surface of the semiconductor layer, semiconductor elements being electrically isolated from each other by the isolation film. The semiconductor device also includes a PN junction portion provided under the isolation film and formed by two semiconductor regions of different conductivity types in the semiconductor layer. The isolation film includes a nitride film provided in a position corresponding to a top of the PN junction portion and has a substantially uniform thickness across the two semiconductor regions and an upper oxide film and a lower oxide film which are provided in upper and lower portions of the nitride film. The surface of the semiconductor layer is silicidized in such a state that a surface of the isolation film is exposed.
摘要:
FS-isolated fields (10a, 10b). LOCOS-isolated fields (11c, 11d). FS-isolated fields (10e, 10f), LOCOS-isolated field (11g, 11h) and FS-isolated field (10i) are arranged in this order. Thus, a master layout can he provided, where SOI transistors having bodies to be supplied with fixed potential and those having bodies not to be supplied with fixed potential are mixed.
摘要:
The semiconductor device has a silicon layer (SOI layer) (12) formed through a silicon oxide film (11) on a support substrate (10). A transistor (T1) is formed in the SOI layer (12). The wiring (17a) is connected with a source of the transistor (T1) through a contact plug (15a). A back metal (18) is formed on an under surface (back surface) of the support substrate (10) and said back metal (18) is connected with the wiring (17a) through a heat radiating plug (16). The contact plug (15a), the heat radiating plug (16) the wiring (17a) and the back metal (18) is made of a metal such as aluminum, tungsten and so on which has a higher thermal conductivity than that of the silicon oxide film (11) and the support substrate (10).
摘要:
FS-isolated fields (10a, 10b), LOCOS-isolated fields (11c, 11d), FS-isolated fields (10e, 10f), LOCOS-isolated field (11g, 11h) and FS-isolated field (10i) are arranged in this order. Thus, a master layout can be provided, where SOI transistors having bodies to be supplied with fixed potential and those having bodies not to be supplied with fixed potential are mixed.
摘要:
The semiconductor device has a silicon layer (SOI layer) (12) formed through a silicon oxide film (11) on a support substrate (10). A transistor (T1) is formed in the SOI layer (12). The wiring (17a) is connected with a source of the transistor (T1) through a contact plug (15a). A back metal (18) is formed on an under surface (back surface) of the support substrate (10) and said back metal (18) is connected with the wiring (17a) through a heat radiating plug (16). The contact plug (15a), the heat radiating plug (16) the wiring (17a) and the back metal (18) is made of a metal such as aluminum, tungsten and so on which has a higher thermal conductivity than that of the silicon oxide film (11) and the support substrate (10).
摘要:
In formation of a source/drain region of an NMOS transistor, a gate-directional extension region of an N+ block region in an N+ block resist film located under the gate-directional extension region from implantation of an N-type impurity. A high resistance forming region, which is the well region having a possibility for implantation of an N-type impurity on a longitudinal extension of a gate electrode , can be formed as a high resistance forming region narrower than a conventional high resistance forming region . Thus, a semiconductor device having a partially isolated body fixed SOI structure capable of reducing body resistance and a method of manufacturing the same are obtained.
摘要:
A semiconductor substrate and a method of fabricating a semiconductor device are provided. An oxide film (13) is formed by oxidizing an edge section and a lower major surface of an SOI substrate (10). This oxidizing step is performed in a manner similar to LOCOS (Local Oxide of Silicon) oxidation by using an oxide film (11) exposed on the edge section and lower major surface of the SOI substrate (10) as an underlying oxide film. Then, the thickness of the oxide film (13) is greater than that of the oxide film (11) on the edge section and lower major surface of the SOI substrate (10). The semiconductor substrate prevents particles of dust from being produced at the edge thereof.