Abstract:
This disclosure relates to a system and method for transitioning vehicle control between autonomous operation and manual operation. The system includes sensors configured to generate output signals conveying information related to the vehicle and its operation. During autonomous vehicle operation, the system gauges the level of responsiveness of a vehicle operator through challenges and corresponding responses. The system determines when to present a challenge to the vehicle operator based on internal and external factors. If necessary, the system will transition from an autonomous operation mode to a manual operation mode.
Abstract:
This disclosure relates to a system and method for detecting vehicle events and generating review criteria based on the detected vehicle events. Some or all of the system may be installed in a vehicle and/or be otherwise coupled with a vehicle. The system may include one or more sensors configured to generate output signals conveying information related to the vehicle and/or multiple video capture devices configured to acquire visual output information representing a vehicle environment. In some implementations, the system may determine a vehicle event type based on the information conveyed by the output signals. The system may generate review criteria, which correspond to the vehicle event, based on the vehicle event type and the fields of view corresponding to the video capture devices.
Abstract:
This disclosure relates to a system configured to generate synchronized electronic vehicle event records. The synchronized vehicle event records may include vehicle operation information, video information, and/or other information. The synchronized electronic vehicle event records may be generated remotely (e.g., “in the cloud”) from a vehicle. The system is configured to communicate with factory installed and/or other (e.g., third party) vehicle systems to generate the vehicle event information and/or cause other information relevant to a particular vehicle event to be transmitted in addition to the vehicle event information. By communicating with existing vehicle systems and causing these systems to transmit information related to vehicle events themselves, and generating the synchronized electronic vehicle event records remotely from a vehicle the system reduces the amount and/or cost of aftermarket equipment that must be installed in a vehicle for vehicle event monitoring.
Abstract:
This disclosure relates to a system and method for calibrating sensors upon installation in a vehicle. The system includes a sensor set configured to generate output signals conveying vectors of acceleration of the vehicle. The system determines a three-dimensional orientation of the sensor set in relation to the vehicle. The system converts output signals from the sensor set into vectors of acceleration of the vehicle.
Abstract:
This disclosure relates to a system and method for transitioning vehicle control between autonomous operation and manual operation. The system includes sensors configured to generate output signals conveying information related to the vehicle and its operation. During autonomous vehicle operation, the system gauges the level of responsiveness of a vehicle operator through challenges and corresponding responses. The system determines when to present a challenge to the vehicle operator based on internal and external factors. If necessary, the system will transition from an autonomous operation mode to a manual operation mode.
Abstract:
This disclosure relates to a system and method for determining vehicle operator preparedness for vehicles that support both autonomous operation and manual operation. The system includes sensors configured to generate output signals conveying information related to vehicles and their operation. During autonomous vehicle operation, the system gauges the level of responsiveness of an individual vehicle operator through challenges and corresponding responses. Based on the level of responsiveness, a preparedness metric is determined for each vehicle operator individually.
Abstract:
This disclosure relates to a system and method for determining responsiveness of a driver of a vehicle to feedback regarding driving behaviors. The system may include a sensor configured to generate output signals conveying first driving behavior information, which may characterize operation of the vehicle by the driver. The system may include one or more processors configured to obtain the first driving behavior information. The one or more processors may effectuate provision of feedback defined by feedback information based on the first driving behavior. The sensor may be configured to output signals conveying second driving behavior information, which may characterize operation of the vehicle by the driver during and/or subsequent to the provision of the feedback. The one or more processors may be configured to obtain the second driving behavior information and assess responsiveness of the driver to the feedback based on the second driving behavior information.
Abstract:
Vehicle event data playback systems described herein may provide users means for reviewing events recorded by a vehicle event recorder. Circumstances relating to vehicle operation may be visually presented in these playback systems. Video playback from multiple recording devices may be synchronized with each other and/or with information related to the operation of the vehicle during the recorded events to affect a presentation of information related to operation of the vehicle. A user may be presented with many data types in graphical and/or intuitive arrangements.
Abstract:
This disclosure relates to a rail vehicle event analysis system configured to facilitate analysis of rail vehicle event records that correspond to rail vehicle events. The system may be configured to visually present a user with information related to operation of a rail vehicle. The user may review the information related to operation of the rail vehicle in real time, responsive to the rail vehicle being involved in a rail vehicle event, and/or at other times. The system may be configured to visually present information based on output signals generated by one or more sensors associated with the rail vehicle. The system may synchronize the presented information such that information from individual sensors may be compared and/or viewed at the same time by the user. The system may be configured to receive observations made by the user based on the user's review of the presented visual information.
Abstract:
This disclosure relates to a system configured to generate synchronized electronic vehicle event records. The synchronized vehicle event records may include vehicle operation information, video information, and/or other information. The synchronized electronic vehicle event records may be generated remotely (e.g., “in the cloud”) from a vehicle. The system is configured to communicate with factory installed and/or other (e.g., third party) vehicle systems to generate the vehicle event information and/or cause other information relevant to a particular vehicle event to be transmitted in addition to the vehicle event information. By communicating with existing vehicle systems and causing these systems to transmit information related to vehicle events themselves, and generating the synchronized electronic vehicle event records remotely from a vehicle the system reduces the amount and/or cost of aftermarket equipment that must be installed in a vehicle for vehicle event monitoring.