Abstract:
The invention is directed to allowing network base stations to receive information from mobile communication terminals about terminal-detected usage of unlicensed band utilization, e.g., due to uncoordinated Wi-Fi usage in combination with LTE deployments in unlicensed bands. The present invention introduces additional information into automatic neighbor relation (ANR) reporting. The additional information comprises information associated with the unlicensed band utilization. The additional information enables a base station scheduler (e.g., an LTE base station scheduler) associated with a base station to take radio access technology (RAT) utilization other than cellular utilization (e.g., 2G, 3G, LTE, etc.) into account in order to decrease in-device coexistence issues and increase unlicensed band system capacity.
Abstract:
A mobile communications terminal with plural antennas for uplink communications with a network base station in a cell, uses an adaptive antenna selection algorithm to select antennas. A method of operating a mobile communications terminal. The cell operator or base station provides parameters and/or settings to the terminal to determine algorithm behavior in selecting antennas, for example, according to operative characteristics of signals in uplink communications in the network, operation of the terminal, and/or network conditions. A communications method includes sending from a base station one or more parameters and/or settings for a terminal to select which of plural antennas of the terminal to use transmitting signals to the base station. A base station transmits to terminals one or more such parameters and/or settings for use in the adaptive antenna selection algorithm to select antennas for transmitting signals to the base station.
Abstract:
The invention is directed to systems, methods and computer program products for executing a handover operation associated with relay termination. An exemplary method comprises: receiving, at a first base station associated with a network, a network registration request from a first terminal, the first terminal being connected to the first base station via a relay terminal; establishing a direct connection between the first base station and the first terminal; and terminating the connection between the first terminal and the relay terminal.
Abstract:
A Framework for Live Uplink Streaming (PLUS) session between a PLUS source (100) and a PLUS sink (200) is initiated and controlled by the PLUS sink. The PLUS source registers with the PLUS sink and indicates its capabilities. The PLUS sink requests establishment of the session and further controls the session once established. The PLUS sink sends control requests that include control information to the PLUS source, thereby controlling media streaming at the PLUS source remotely.
Abstract:
A network node (12) schedules a wireless communications device (14) to utilize a subsection (54) of a previously configured active bandwidth part (46). The wireless communications device (14) utilizes the subsection (54) for operations such as monitoring for control signaling from the network node (12), channel measurements, and/or for communication between the wireless communications device (14) and the network node (12) (e.g. uplink and/or downlink traffic). Accordingly, the wireless communications device (14) may reduce power consumption by not monitoring and/or using a wider bandwidth.
Abstract:
A method of operating a terminal device and network infrastructure equipment in a wireless telecommunications system for communicating on a primary cell supporting a primary component carrier on radio resources within a first frequency band and a secondary cell supporting a secondary component carrier on radio resources within a second frequency band. The infrastructure equipment establishes plural configuration settings for the secondary carrier based on measurements of radio usage in the second frequency band which are conveyed to the terminal device. The terminal device makes channel quality measurements for the secondary component carrier according to the different configuration settings and reports these to the infrastructure equipment. Based on these measurements of channel quality for the different configurations, the infrastructure equipment selects one of the configuration settings, and conveys an indication of this to the terminal device in association with an allocation of transmission resources on the secondary component carrier.
Abstract:
A method of operating a terminal device and a base station in a wireless telecommunications system to communicate with one another using a primary component carrier operating on radio resources within a first frequency band and a secondary component carrier operating on radio resources within a second frequency band. The terminal device makes measurements of radio usage in the second frequency band, e.g. by other devices which are not part of the wireless telecommunications system but which can also use radio resources within the second frequency band. The terminal device transmits an indication of the measurements to the base station, and on the basis if this the base station establishes a configuration setting for the secondary component carrier, for example in terms of frequency resources to use for the secondary component carrier. The configuration setting is associated with a validity period during which the base station communicates data to the terminal device using the primary component carrier and the secondary component carrier operating in accordance with its configuration setting. When the validity period expires, the terminal device again measures and reports on radio usage so the base station can determine an updated configuration setting for the secondary component carrier that takes account of any changes in radio usage during the validity period.
Abstract:
A method of operating an access node (112) of a sub-area (161) of a communication network (100) includes transmitting configuration data (4001) for wake-up signal (700, 711, 712, 4003) transmission in the sub-area (161) and in at least one further sub-area (162-168) of the communication network (100).
Abstract:
Method carried out in a radio communications network for communicating with a user equipment, comprising transmitting resource allocation information addressed to the user equipment, wherein said resource allocation information comprises an indication of frequency domain repetition, and wherein said frequency domain repetition is associated with a predetermined mapping of repetitions.
Abstract:
A location server device includes a memory circuitry, a processor circuitry, and an interface. The location server device is configured to communicate, via the interface, with one or more positioning units configured to communicate with one or more electronic devices one or more first positioning signals at a first frequency. The processor circuitry is configured to select at least one of the one or more positioning units based on detecting a trigger event. The interface is configured to transmit, to the at least one selected positioning unit, an activation signal. The activation signal indicates to the at least one selected positioning unit to activate transmission of one or more second positioning signals at a second frequency that is different from the first frequency.