摘要:
A computing system comprises a see-through display device, a logic subsystem, and a storage subsystem storing instructions. When executed by the logic subsystem, the instructions display on the see-through display device a virtual arena, a user-controlled avatar, and an opponent avatar. The virtual arena appears to be integrated within a physical space when the physical space is viewed through the see-through display device. In response to receiving a user input, the instructions may also display on the see-through display device an updated user-controlled avatar.
摘要:
A depth image of a scene may be received, observed, or captured by a device. The depth image may include a human target that may have, for example, a portion thereof non-visible or occluded. For example, a user may be turned such that a body part may not be visible to the device, may have one or more body parts partially outside a field of view of the device, may have a body part or a portion of a body part behind another body part or object, or the like such that the human target associated with the user may also have a portion body part or a body part non-visible or occluded in the depth image. A position or location of the non-visible or occluded portion or body part of the human target associated with the user may then be estimated.
摘要:
Methods for providing real-time feedback to an end user of a mobile device as they are interacting with or manipulating one or more virtual objects within an augmented reality environment are described. The real-time feedback may comprise visual feedback, audio feedback, and/or haptic feedback. In some embodiments, a mobile device, such as a head-mounted display device (HMD), may determine an object classification associated with a virtual object within an augmented reality environment, detect an object manipulation gesture performed by an end user of the mobile device, detect an interaction with the virtual object based on the object manipulation gesture, determine a magnitude of a virtual force associated with the interaction, and provide real-time feedback to the end user of the mobile device based on the interaction, the magnitude of the virtual force applied to the virtual object, and the object classification associated with the virtual object.
摘要:
A system and related methods for an augmented reality help system in a head-mounted display device are provided. In one example, the head-mounted display device includes a plurality of sensors and a display system for presenting holographic objects. An augmented reality help program is configured to receive one or more user biometric parameters from the plurality of sensors. Based on the user biometric parameters, the program determines that the user is experiencing a stress response, and presents help content to the user via the head-mounted display device.
摘要:
A system and related methods for an augmented reality help system in a head-mounted display device are provided. In one example, the head-mounted display device includes a plurality of sensors and a display system for presenting holographic objects. An augmented reality help program is configured to receive one or more user biometric parameters from the plurality of sensors. Based on the user biometric parameters, the program determines that the user is experiencing a stress response, and presents help content to the user via the head-mounted display device.
摘要:
A system recognizes human beings in their natural environment, without special sensing devices attached to the subjects, uniquely identifies them and tracks them in three dimensional space. The resulting representation is presented directly to applications as a multi-point skeletal model delivered in real-time. The device efficiently tracks humans and their natural movements by understanding the natural mechanics and capabilities of the human muscular-skeletal system. The device also uniquely recognizes individuals in order to allow multiple people to interact with the system via natural movements of their limbs and body as well as voice commands/responses.
摘要:
A system to present the user a 3-D virtual environment as well as non-visual sensory feedback for interactions that user makes with virtual objects in that environment is disclosed. In an exemplary embodiment, a system comprising a depth camera that captures user position and movement, a three-dimensional (3-D) display device that presents the user a virtual environment in 3-D and a haptic feedback device provides haptic feedback to the user as he interacts with a virtual object in the virtual environment. As the user moves through his physical space, he is captured by the depth camera. Data from that depth camera is parsed to correlate a user position with a position in the virtual environment. Where the user position or movement causes the user to touch the virtual object, that is determined, and corresponding haptic feedback is provided to the user.
摘要:
Techniques for generating an avatar model during the runtime of an application are herein disclosed. The avatar model can be generated from an image captured by a capture device. End-effectors can be positioned an inverse kinematics can be used to determine positions of other nodes in the avatar model.
摘要:
A system to present the user a 3-D virtual environment as well as non-visual sensory feedback for interactions that user makes with virtual objects in that environment is disclosed. In an exemplary embodiment, a system comprising a depth camera that captures user position and movement, a three-dimensional (3-D) display device that presents the user a virtual environment in 3-D and a haptic feedback device provides haptic feedback to the user as he interacts with a virtual object in the virtual environment. As the user moves through his physical space, he is captured by the depth camera. Data from that depth camera is parsed to correlate a user position with a position in the virtual environment. Where the user position or movement causes the user to touch the virtual object, that is determined, and corresponding haptic feedback is provided to the user.
摘要:
A system to present the user a 3-D virtual environment as well as non-visual sensory feedback for interactions that user makes with virtual objects in that environment is disclosed. In an exemplary embodiment, a system comprising a depth camera that captures user position and movement, a three-dimensional (3-D) display device that presents the user a virtual environment in 3-D and a haptic feedback device provides haptic feedback to the user as he interacts with a virtual object in the virtual environment. As the user moves through his physical space, he is captured by the depth camera. Data from that depth camera is parsed to correlate a user position with a position in the virtual environment. Where the user position or movement causes the user to touch the virtual object, that is determined, and corresponding haptic feedback is provided to the user.