Abstract:
An emulated wireless access point (AP) at a first PMC device (PMC1) establishes a first tunneled direct link setup (TDLS) session between a first station module (STA1) incorporated into the PMC1 and a second station module (STA2) incorporated into a second PMC device (PMC2). Following establishment of the TDLS session, the wireless AP is allowed to sleep; and most infrastructure management duties are handled by the STA1 during the session. PMC device battery charge may be conserved as a result. The emulated wireless AP may also establish a second TDLS link to a third station module (STA3) incorporated into a third PMC device (PMC3). The STA1 may then bridge data traffic flow between the STA2 and the STA3. Such bridging operation may enable communication between two PMC devices otherwise unable to decode data received from the other.
Abstract:
Apparatus, systems, and methods disclosed herein operate to provide wireless communication between personal mobile communication (PMC) devices. An emulated wireless access point (AP) at a first PMC device (PMC1) establishes a first tunneled direct link setup (TDLS) session between a first station module (STA1) incorporated into the PMC1 and a second station module (STA2) incorporated into a second PMC device (PMC2). Following establishment of the TDLS session, the wireless AP is allowed to sleep; and most infrastructure management duties are handled by the STA1 during the session. PMC device battery charge may be conserved as a result. The emulated wireless AP may also establish a second TDLS link to a third station module (STA3) incorporated into a third PMC device (PMC3). The STA1 may then bridge data traffic flow between the STA2 and the STA3. Such bridging operation may enable communication between two PMC devices otherwise unable to decode data received from the other.
Abstract:
A method includes pulsating a magnetic field at a first location associated with an external surface of a wall containing magnetic material. The method also includes measuring at least one characteristic of the pulsating magnetic field at a second location associated with the external surface of the wall. The at least one characteristic changes based on corrosion on an internal surface the wall between the first and second locations. The magnetic field could be pulsated by applying an AC signal to a conductive coil or by vibrating a magnet. The method could also include analyzing the at least one measured characteristic to identify an amount of the corrosion and/or a change in the amount of the corrosion. Use of the internal surface the wall could be modified based on the amount or change of the corrosion. Multiple magnetic fields can be generated at multiple first locations, and the at least one characteristic can be measured at multiple second locations.
Abstract:
A method of synchronizing includes providing a sensor network including sensor nodes having object recognition sensors (ORS's) and building automation network nodes. The ORS's have partially overlapping fields of view in a sensed overlap area in the building. Movement of an individual through the sensed overlap area triggers dynamic synchronizing with the first sensor node waking up and sending a first RF request to join a subnet and for a schedule of wakeup times, the first sensor node receiving a response from any sensor node that receives the first request including synchronization information having times the first sensor node should wake up. The second sensor node is activated by the individual's movement and sends a second RF message to join the subnet and for a schedule of wakeup times. The first sensor node receives the second RF message and in response sends the synchronization information to the second sensor node.
Abstract:
A wireless device that tailors communications based on power parameters of the device. In one embodiment, a wireless device includes an energy source, a power monitor coupled to the energy source, a wireless transceiver, and a traffic controller coupled to the power monitor and the wireless transceiver. The power monitor is configured to measure a parameter of the energy source. The wireless transceiver is configured to wirelessly communicate via a wireless network. The traffic controller is configured to set length of packets to be transmitted based on the measured parameter of the energy source.
Abstract:
A method includes pulsating a magnetic field at a first location associated with an external surface of a wall containing magnetic material. The method also includes measuring at least one characteristic of the pulsating magnetic field at a second location associated with the external surface of the wall. The at least one characteristic changes based on corrosion on an internal surface the wall between the first and second locations. The magnetic field could be pulsated by applying an AC signal to a conductive coil or by vibrating a magnet. The method could also include analyzing the at least one measured characteristic to identify an amount of the corrosion and/or a change in the amount of the corrosion. Use of the internal surface the wall could be modified based on the amount or change of the corrosion. Multiple magnetic fields can be generated at multiple first locations, and the at least one characteristic can be measured at multiple second locations.
Abstract:
An emulated wireless access point (AP) at a first PMC device (PMC1) establishes a first tunneled direct link setup (TDLS) session between a first station module (STA1) incorporated into the PMC1 and a second station module (STA2) incorporated into a second PMC device (PMC2). Following establishment of the TDLS session, the wireless AP is allowed to sleep; and most infrastructure management duties are handled by the STA1 during the session. PMC device battery charge may be conserved as a result. The emulated wireless AP may also establish a second TDLS link to a third station module (STA3) incorporated into a third PMC device (PMC3). The STA1 may then bridge data traffic flow between the STA2 and the STA3. Such bridging operation may enable communication between two PMC devices otherwise unable to decode data received from the other.
Abstract:
One aspect of the invention includes a computer device. The computer device includes a network interface component configured to download media from an external source through a secure network connection. The computer device also includes a memory configured to store the downloaded content. The computer device further includes a media profiling engine configured to query the memory for the downloaded content based on the connection of the network interface component to the external source through the secure network connection and to generate a media profile log comprising information relevant to the downloaded content.
Abstract:
An electronic device and methods for providing high resolution ranging measurements are disclosed. The electronic device includes a pulse generator, a memory, an ADC, a timer, a comparator, a processing unit, connectors for coupling to a transceiver and instructions stored in the memory. The instructions, when performed by the processing unit, performs a method that determines an estimated time of arrival of a series of measurement pulses in the signal and turns on, prior to the estimated time of arrival, the ADC to capture the series of measurement pulses using a first resolution provided by sampling the signal at a rate equal to or greater than the Nyquist rate. The ADC remains on for a fixed time period sized to capture the series of measurement pulses.
Abstract:
A network of sensor and controller nodes having the ability to be dynamically programmed and receive updated software from one another, and from a host system. Each network node includes multiple state machines, at least some of which are operable relative to physical pins at the network node; the physical pins correspond to inputs from sensor functions or outputs to control functions. The network nodes include microcontrollers that are operable in an operating mode to execute a state machine and respond to commands from other nodes or the host, and in a read mode to receive and store program instructions transmitted from other nodes or the host. A learn mode is also provided, by way of which a network node can store program code corresponding to instructions and actions at the node when under user control.