Abstract:
An integrated circuit containing a first plurality of MOS transistors operating in a low voltage range, and a second plurality of MOS transistors operating in a mid voltage range, may also include a high-voltage MOS transistor which operates in a third voltage range significantly higher than the low and mid voltage ranges, for example 20 to 30 volts. The high-voltage MOS transistor has a closed loop configuration, in which a drain region is surrounded by a gate, which is in turn surrounded by a source region, so that the gate does not overlap field oxide. The integrated circuit may include an n-channel version of the high-voltage MOS transistor and/or a p-channel version of the high-voltage MOS transistor. Implanted regions of the n-channel version and the p-channel version are formed concurrently with implanted regions in the first and second pluralities of MOS transistors.
Abstract:
An integrated circuit containing a MOS transistor and a DEMOS transistor of a same polarity may be formed by implanting dopants of a same conductivity type as source/drain regions of the MOS transistor and the DEMOS transistor through a gate of the MOS transistor and through a gate of the DEMOS transistor. The implanted dopants are blocked from a drain-side edge of the DEMOS transistor gate. The implanted dopants form a drain enhancement region under the DEMOS transistor gate in a drift region of an extended drain of the DEMOS transistor.
Abstract:
An integrated circuit containing an extended drain MOS transistor may be formed by forming a drift region implant mask with mask fingers abutting a channel region and extending to the source/channel active area, but not extending to a drain contact active area. Dopants implanted through the exposed fingers form lateral doping striations in the substrate under the mask fingers. An average doping density of the drift region under the gate is at least 25 percent less than an average doping density of the drift region at the drain contact active area. In one embodiment, the dopants diffuse laterally to form a continuous drift region. In another embodiment, substrate material between lateral doping striations remains an opposite conductivity type from the lateral doping striations.
Abstract:
In some examples, a transistor comprises a gallium nitride (GaN) layer; a first GaN-based alloy layer having a top side and disposed on the GaN layer; a second GaN-based alloy layer disposed on the first GaN-based alloy layer, wherein the second GaN-based alloy layer covers a first portion of the top side; and a source contact structure, a drain contact structure, and a gate contact structure, wherein the source, drain, and gate contact structures are supported by the first GaN-based alloy layer.
Abstract:
An integrated circuit containing a first plurality of MOS transistors operating in a low voltage range, and a second plurality of MOS transistors operating in a mid voltage range, may also include a high-voltage MOS transistor which operates in a third voltage range significantly higher than the low and mid voltage ranges, for example 20 to 30 volts. The high-voltage MOS transistor has a closed loop configuration, in which a drain region is surrounded by a gate, which is in turn surrounded by a source region, so that the gate does not overlap field oxide. The integrated circuit may include an n-channel version of the high-voltage MOS transistor and/or a p-channel version of the high-voltage MOS transistor. Implanted regions of the n-channel version and the p-channel version are formed concurrently with implanted regions in the first and second pluralities of MOS transistors.
Abstract:
A method includes applying a DC stress condition to a transistor for a predetermined stress time, measuring an impedance of the transistor after the predetermined stress time, and repeating the application of the DC stress condition and the measurement of the impedance until the measured impedance exceeds an impedance threshold or a total stress time exceeds a time threshold, where the DC stress condition includes applying a non-zero drain voltage signal to a drain terminal of the transistor, applying a gate voltage signal to a gate terminal of the transistor, and applying a non-zero source current signal to a source terminal of the transistor.
Abstract:
An integrated circuit containing a first plurality of MOS transistors operating in a low voltage range, and a second plurality of MOS transistors operating in a mid voltage range, may also include a high-voltage MOS transistor which operates in a third voltage range significantly higher than the low and mid voltage ranges, for example 20 to 30 volts. The high-voltage MOS transistor has a closed loop configuration, in which a drain region is surrounded by a gate, which is in turn surrounded by a source region, so that the gate does not overlap field oxide. The integrated circuit may include an n-channel version of the high-voltage MOS transistor and/or a p-channel version of the high-voltage MOS transistor. Implanted regions of the n-channel version and the p-channel version are formed concurrently with implanted regions in the first and second pluralities of MOS transistors.
Abstract:
Impurity atoms of a first type are implanted through a gate and a thin gate dielectric into a channel region that has substantially only the first type of impurity atoms at a middle point of the channel region to increase the average dopant concentration of the first type of impurity atoms in the channel region to adjust the threshold voltage of a transistor.
Abstract:
Impurity atoms of a first type are implanted through a gate and a thin gate dielectric into a channel region that has substantially only the first type of impurity atoms at a middle point of the channel region to increase the average dopant concentration of the first type of impurity atoms in the channel region to adjust the threshold voltage of a transistor.