Abstract:
A method for object classification in a decision tree based adaptive boosting (AdaBoost) classifier implemented on a single-instruction multiple-data (SIMD) processor is provided that includes receiving feature vectors extracted from N consecutive window positions in an image in a memory coupled to the SIMD processor and evaluating the N consecutive window positions concurrently by the AdaBoost classifier using the feature vectors and vector instructions of the SIMD processor, in which the AdaBoost classifier concurrently traverses decision trees for the N consecutive window positions until classification is complete for the N consecutive window positions.
Abstract:
Described examples include an integrated circuit including a vector multiply unit including a plurality of multiply/accumulate nodes, in which the vector multiply unit is operable to provide an output from the multiply/accumulate nodes, a first data feeder operable to provide first data to the vector multiply unit in vector format, and a second data feeder operable to provide second data to the vector multiply unit in vector format.
Abstract:
A method for object classification in a decision tree based adaptive boosting (AdaBoost) classifier implemented on a single-instruction multiple-data (SIMD) processor is provided that includes receiving feature vectors extracted from N consecutive window positions in an image in a memory coupled to the SIMD processor and evaluating the N consecutive window positions concurrently by the AdaBoost classifier using the feature vectors and vector instructions of the SIMD processor, in which the AdaBoost classifier concurrently traverses decision trees for the N consecutive window positions until classification is complete for the N consecutive window positions.
Abstract:
The disclosure provides a noise filter. The noise filter includes a motion estimation (ME) engine. The ME receives a current frame and a reference frame. The current frame comprising a current block and the reference frame includes a plurality of reference blocks. The ME engine generates final motion vectors. The current block comprises a plurality of current pixels. A motion compensation unit generates a motion compensated block based on the final motion vectors and the reference frame. The motion compensated block includes a plurality of motion compensated pixels. A weighted average filter multiplies each current pixel of the plurality current pixels and a corresponding motion compensated pixel of the plurality of motion compensated pixels with a first weight and a second weight respectively. The weighted average filter generates a filtered block. A blockiness removal unit is coupled to the weighted average filter and removes artifacts in the filtered block.
Abstract:
Software instructions are executed on a processor within a computer system to configure a steaming engine with stream parameters to define a multidimensional array. The stream parameters define a size for each dimension of the multidimensional array and a specified width for a selected dimension of the array. Data is fetched from a memory coupled to the streaming engine responsive to the stream parameters. A stream of vectors is formed for the multidimensional array responsive to the stream parameters from the data fetched from memory. When the selected dimension in the stream of vectors exceeds the specified width, the streaming engine inserts null elements into each portion of a respective vector for the selected dimension that exceeds the specified width in the stream of vectors. Stream vectors that are completely null are formed by the streaming engine without accessing the system memory for respective data.
Abstract:
Software instructions are executed on a processor within a computer system to configure a streaming engine with stream parameters to define a multidimensional array. The stream parameters define a size for each dimension of the multidimensional array and a specified width for a selected dimension of the array. Data is fetched from a memory coupled to the streaming engine responsive to the stream parameters. A stream of vectors is formed for the multidimensional array responsive to the stream parameters from the data fetched from memory. When the selected dimension in the stream of vectors exceeds the specified width, the streaming engine inserts null elements into each portion of a respective vector for the selected dimension that exceeds the specified width in the stream of vectors. Stream vectors that are completely null are formed by the streaming engine without accessing the system memory for respective data.
Abstract:
Software instructions are executed on a processor within a computer system to configure a steaming engine with stream parameters to define a multidimensional array. The stream parameters define a size for each dimension of the multidimensional array and a specified width for a selected dimension of the array. Data is fetched from a memory coupled to the streaming engine responsive to the stream parameters. A stream of vectors is formed for the multidimensional array responsive to the stream parameters from the data fetched from memory. When the selected dimension in the stream of vectors exceeds the specified width, the streaming engine inserts null elements into each portion of a respective vector for the selected dimension that exceeds the specified width in the stream of vectors. Stream vectors that are completely null are formed by the streaming engine without accessing the system memory for respective data.
Abstract:
The disclosure provides a noise filter. The noise filter includes a motion estimation (ME) engine. The ME receives a current frame and a reference frame. The current frame comprising a current block and the reference frame includes a plurality of reference blocks. The ME engine generates final motion vectors. The current block comprises a plurality of current pixels. A motion compensation unit generates a motion compensated block based on the final motion vectors and the reference frame. The motion compensated block includes a plurality of motion compensated pixels. A weighted average filter multiplies each current pixel of the plurality of current pixels and a corresponding motion compensated pixel of the plurality of motion compensated pixels with a first weight and a second weight respectively. The weighted average filter generates a filtered block. A blockiness removal unit is coupled to the weighted average filter and removes artifacts in the filtered block.
Abstract:
Software instructions are executed on a processor within a computer system to configure a steaming engine with stream parameters to define a multidimensional array. The stream parameters define a size for each dimension of the multidimensional array and a specified width for a selected dimension of the array. Data is fetched from a memory coupled to the streaming engine responsive to the stream parameters. A stream of vectors is formed for the multidimensional array responsive to the stream parameters from the data fetched from memory. When the selected dimension in the stream of vectors exceeds the specified width, the streaming engine inserts null elements into each portion of a respective vector for the selected dimension that exceeds the specified width in the stream of vectors. Stream vectors that are completely null are formed by the streaming engine without accessing the system memory for respective data.
Abstract:
A method for object classification in a decision tree based adaptive boosting (AdaBoost) classifier implemented on a single-instruction multiple-data (SIMD) processor is provided that includes receiving feature vectors extracted from N consecutive window positions in an image in a memory coupled to the SIMD processor and evaluating the N consecutive window positions concurrently by the AdaBoost classifier using the feature vectors and vector instructions of the SIMD processor, in which the AdaBoost classifier concurrently traverses decision trees for the N consecutive window positions until classification is complete for the N consecutive window positions.