Epitaxial growth methods and structures thereof

    公开(公告)号:US10453925B2

    公开(公告)日:2019-10-22

    申请号:US15089153

    申请日:2016-04-01

    Abstract: A method and structure for providing a two-step defect reduction bake, followed by a high-temperature epitaxial layer growth. In various embodiments, a semiconductor wafer is loaded into a processing chamber. While the semiconductor wafer is loaded within the processing chamber, a first pre-epitaxial layer deposition baking process is performed at a first pressure and first temperature. In some cases, after the first pre-epitaxial layer deposition baking process, a second pre-epitaxial layer deposition baking process is then performed at a second pressure and second temperature. In some embodiments, the second pressure is different than the first pressure. By way of example, after the second pre-epitaxial layer deposition baking process and while at a growth temperature, a precursor gas may then be introduced into the processing chamber to deposit an epitaxial layer over the semiconductor wafer.

    Semiconductor device and manufacturing method thereof

    公开(公告)号:US10164096B2

    公开(公告)日:2018-12-25

    申请号:US14833022

    申请日:2015-08-21

    Abstract: A fin field effect transistor (Fin FET) device includes a fin structure extending in a first direction and protruding from an isolation insulating layer disposed over a substrate. The fin structure includes a well layer, an oxide layer disposed over the well layer and a channel layer disposed over the oxide layer. The Fin FET device includes a gate structure covering a portion of the fin structure and extending in a second direction perpendicular to the first direction. The Fin FET device includes a source and a drain. Each of the source and drain includes a stressor layer disposed in recessed portions formed in the fin structure. The stressor layer extends above the recessed portions and applies a stress to a channel layer of the fin structure under the gate structure. The Fin FET device includes a dielectric layer formed in contact with the oxide layer and the stressor layer in the recessed portions.

    Epitaxial growth methods and structures thereof

    公开(公告)号:US11456360B2

    公开(公告)日:2022-09-27

    申请号:US15929722

    申请日:2020-05-18

    Abstract: A method and structure for providing a two-step defect reduction bake, followed by a high-temperature epitaxial layer growth. In various embodiments, a semiconductor wafer is loaded into a processing chamber. While the semiconductor wafer is loaded within the processing chamber, a first pre-epitaxial layer deposition baking process is performed at a first pressure and first temperature. In some cases, after the first pre-epitaxial layer deposition baking process, a second pre-epitaxial layer deposition baking process is then performed at a second pressure and second temperature. In some embodiments, the second pressure is different than the first pressure. By way of example, after the second pre-epitaxial layer deposition baking process and while at a growth temperature, a precursor gas may then be introduced into the processing chamber to deposit an epitaxial layer over the semiconductor wafer.

    Radical-activated etching of metal oxides

    公开(公告)号:US11276604B1

    公开(公告)日:2022-03-15

    申请号:US17081709

    申请日:2020-10-27

    Abstract: The present disclosure describes methods and systems for radical-activated etching of a metal oxide. The system includes a chamber, a wafer holder configured to hold a wafer with a metal oxide disposed thereon, a first gas line fluidly connected to the chamber and configured to deliver a gas to the chamber, a plasma generator configured to generate a plasma from the gas, a grid system between the plasma generator and the wafer holder and configured to increase a kinetic energy of ions from the plasma, a neutralizer between the grid system and the wafer holder and configured to generate electrons and neutralize the ions to generate radicals, and a second gas line fluidly connected to the chamber and configured to deliver a precursor across the wafer. The radicals facilitate etching of the metal oxide by the precursor.

Patent Agency Ranking